BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1848853)

  • 1. Substrate specificity, kinetics, and stoichiometry of sodium-dependent adenosine transport in L1210/AM mouse leukemia cells.
    Dagnino L; Bennett LL; Paterson AR
    J Biol Chem; 1991 Apr; 266(10):6312-7. PubMed ID: 1848853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent nucleoside transport in mouse leukemia L1210 cells.
    Dagnino L; Bennett LL; Paterson AR
    J Biol Chem; 1991 Apr; 266(10):6308-11. PubMed ID: 2007583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L1210/B23.1 cells express equilibrative, inhibitor-sensitive nucleoside transport activity and lack two parental nucleoside transport activities.
    Vijayalakshmi D; Dagnino L; Belt JA; Gati WP; Cass CE; Paterson AR
    J Biol Chem; 1992 Aug; 267(24):16951-6. PubMed ID: 1512237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Dagnino L; Paterson AR
    Cancer Res; 1990 Oct; 50(20):6549-53. PubMed ID: 1698538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of nucleoside transport in mammalian cells. Two types of transport activity in L1210 and other cultured neoplastic cells.
    Belt JA
    Mol Pharmacol; 1983 Nov; 24(3):479-84. PubMed ID: 6314117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial rate kinetics and evidence for duality of mediated transport of adenosine, related purine nucleosides, and nucleoside analogues in L1210 cells.
    Chello PL; Sirotnak FM; Dorick DM; Yang CH; Montgomery JA
    Cancer Res; 1983 Jan; 43(1):97-103. PubMed ID: 6847787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentrative uridine transport by murine splenocytes: kinetics, substrate specificity, and sodium dependency.
    Darnowski JW; Holdridge C; Handschumacher RE
    Cancer Res; 1987 May; 47(10):2614-9. PubMed ID: 3567894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable expression of a recombinant sodium-dependent, pyrimidine-selective nucleoside transporter (CNT1) in a transport-deficient mouse leukemia cell line.
    Crawford CR; Cass CE; Young JD; Belt JA
    Biochem Cell Biol; 1998; 76(5):843-51. PubMed ID: 10353719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to inhibition by N-ethylmaleimide: a property of nitrobenzylthioinosine-sensitive equilibrative nucleoside transporter of murine myeloma cells.
    Lee CW; Goh LB; Tu Y
    Biochim Biophys Acta; 1995 Aug; 1268(2):200-8. PubMed ID: 7662709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of an L1210 cell line retaining the sodium-dependent carrier cif as its sole nucleoside transport activity.
    Crawford CR; Ng CY; Belt JA
    J Biol Chem; 1990 Aug; 265(23):13730-4. PubMed ID: 1974252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantiomeric selectivity of adenosine transport systems in mouse erythrocytes and L1210 cells.
    Gati WP; Dagnino L; Paterson AR
    Biochem J; 1989 Nov; 263(3):957-60. PubMed ID: 2597137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nucleoside transport inhibitors on the salvage and toxicity of adenosine and deoxyadenosine in L1210 and P388 mouse leukemia cells.
    Plagemann PG; Wohlhueter RM
    Cancer Res; 1985 Dec; 45(12 Pt 1):6418-24. PubMed ID: 3877568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities.
    Vijayalakshmi D; Belt JA
    J Biol Chem; 1988 Dec; 263(36):19419-23. PubMed ID: 3198634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of adenosine by recombinant purine- and pyrimidine-selective sodium/nucleoside cotransporters from rat jejunum expressed in Xenopus laevis oocytes.
    Yao SY; Ng AM; Ritzel MW; Gati WP; Cass CE; Young JD
    Mol Pharmacol; 1996 Dec; 50(6):1529-35. PubMed ID: 8967974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and release of [3H]formycin B via sodium-dependent nucleoside transporters in mouse leukemic L1210/MA27.1 cells.
    Borgland SL; Parkinson FE
    J Pharmacol Exp Ther; 1997 Apr; 281(1):347-53. PubMed ID: 9103516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposed mechanism of therapeutic selectivity for 9-beta-D-arabinofuranosyl-2-fluoroadenine against murine leukemia based upon lower capacities for transport and phosphorylation in proliferative intestinal epithelium compared to tumor cells.
    Barrueco JR; Jacobsen DM; Chang CH; Brockman RW; Sirotnak FM
    Cancer Res; 1987 Feb; 47(3):700-6. PubMed ID: 3802076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters.
    Crawford CR; Ng CY; Noel LD; Belt JA
    J Biol Chem; 1990 Jun; 265(17):9732-6. PubMed ID: 2351668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of systems mediating transport of adenosine, 9-beta-d-arabinofuranosyl-2-fluoroadenine, and other purine nucleoside analogues in L1210 cells.
    Sirotnak FM; Chello PL; Dorick DM; Montgomery JA
    Cancer Res; 1983 Jan; 43(1):104-9. PubMed ID: 6847758
    [No Abstract]   [Full Text] [Related]  

  • 19. Transport of methotrexate in L1210 cells. Mechanism for inhibition by p-chloromercuriphenylsulfonate and N-ethylmaleimide.
    Henderson GB; Zevely EM
    Biochim Biophys Acta; 1981 Jan; 640(2):549-56. PubMed ID: 6260257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside transport in brush border membrane vesicles from human kidney.
    Gutierrez MM; Brett CM; Ott RJ; Hui AC; Giacomini KM
    Biochim Biophys Acta; 1992 Mar; 1105(1):1-9. PubMed ID: 1567888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.