These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 18488628)
1. Differential effects of a local industrial sand lance fishery on seabird breeding performance. Frederiksen M; Jensen H; Daunt F; Mavor RA; Wanless S Ecol Appl; 2008 Apr; 18(3):701-10. PubMed ID: 18488628 [TBL] [Abstract][Full Text] [Related]
2. Estimating the impacts of fishing on dependent predators: a case study in the California Current. Field JC; MacCall AD; Bradley RW; Sydeman WJ Ecol Appl; 2010 Dec; 20(8):2223-36. PubMed ID: 21265453 [TBL] [Abstract][Full Text] [Related]
3. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction. Kokubun N; Yamamoto T; Kikuchi DM; Kitaysky A; Takahashi A PLoS One; 2015; 10(10):e0138850. PubMed ID: 26465335 [TBL] [Abstract][Full Text] [Related]
4. Spatial and temporal variations in seabird bycatch: Incidental bycatch in the Norwegian coastal gillnet-fishery. Bærum KM; Anker-Nilssen T; Christensen-Dalsgaard S; Fangel K; Williams T; Vølstad JH PLoS One; 2019; 14(3):e0212786. PubMed ID: 30865723 [TBL] [Abstract][Full Text] [Related]
5. Differential adult survival at close seabird colonies: The importance of spatial foraging segregation and bycatch risk during the breeding season. Genovart M; Bécares J; Igual JM; Martínez-Abraín A; Escandell R; Sánchez A; Rodríguez B; Arcos JM; Oro D Glob Chang Biol; 2018 Mar; 24(3):1279-1290. PubMed ID: 29178374 [TBL] [Abstract][Full Text] [Related]
6. A junk-food hypothesis for gannets feeding on fishery waste. Grémillet D; Pichegru L; Kuntz G; Woakes AG; Wilkinson S; Crawford RJ; Ryan PG Proc Biol Sci; 2008 May; 275(1639):1149-56. PubMed ID: 18270155 [TBL] [Abstract][Full Text] [Related]
7. A structured seabird population model reveals how alternative forage fish control rules benefit seabirds and fisheries. Koehn LE; Siple MC; Essington TE Ecol Appl; 2021 Oct; 31(7):e02401. PubMed ID: 34218492 [TBL] [Abstract][Full Text] [Related]
8. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358 [TBL] [Abstract][Full Text] [Related]
9. Sea ice extent and phenology influence breeding of high-Arctic seabirds: 4 decades of monitoring in Nunavut, Canada. Gutowsky SE; Baak JE; Gaston AJ; Mallory ML Oecologia; 2022 Feb; 198(2):393-406. PubMed ID: 35066670 [TBL] [Abstract][Full Text] [Related]
10. Combined bottom-up and top-down pressures drive catastrophic population declines of Arctic skuas in Scotland. Perkins A; Ratcliffe N; Suddaby D; Ribbands B; Smith C; Ellis P; Meek E; Bolton M J Anim Ecol; 2018 Nov; 87(6):1573-1586. PubMed ID: 30155905 [TBL] [Abstract][Full Text] [Related]
11. Interannual variation in the adrenal responsiveness of black-legged kittiwake chicks (Rissa tridactyla). Brewer JH; O'Reilly KM; Dean Kildaw S; Loren Buck C Gen Comp Endocrinol; 2008 Apr; 156(2):361-8. PubMed ID: 18308320 [TBL] [Abstract][Full Text] [Related]
12. Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs. Hipfner JM; Galbraith M; Tucker S; Studholme KR; Domalik AD; Pearson SF; Good TP; Ross PS; Hodum P Environ Pollut; 2018 Aug; 239():215-222. PubMed ID: 29655068 [TBL] [Abstract][Full Text] [Related]
13. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf. Paredes R; Orben RA; Suryan RM; Irons DB; Roby DD; Harding AM; Young RC; Benoit-Bird K; Ladd C; Renner H; Heppell S; Phillips RA; Kitaysky A PLoS One; 2014; 9(3):e92520. PubMed ID: 24671108 [TBL] [Abstract][Full Text] [Related]
15. Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species. Wakefield ED; Owen E; Baer J; Carroll MJ; Daunt F; Dodd SG; Green JA; Guilford T; Mavor RA; Miller PI; Newell MA; Newton SF; Robertson GS; Shoji A; Soanes LM; Votier SC; Wanless S; Bolton M Ecol Appl; 2017 Oct; 27(7):2074-2091. PubMed ID: 28653410 [TBL] [Abstract][Full Text] [Related]
16. Utility of time-lapse photography in studies of seabird ecology. De Pascalis F; Collins PM; Green JA PLoS One; 2018; 13(12):e0208995. PubMed ID: 30540854 [TBL] [Abstract][Full Text] [Related]
17. Interannual variability of Black-legged Kittiwake productivity is reflected in baseline plasma corticosterone. Buck CL; O'Reilly KM; Kildaw SD Gen Comp Endocrinol; 2007 Feb; 150(3):430-6. PubMed ID: 17161400 [TBL] [Abstract][Full Text] [Related]
18. Comparing non-breeding distribution and behavior of red-legged kittiwakes from two geographically distant colonies. Drummond BA; Orben RA; Christ AM; Fleishman AB; Renner HM; Rojek NA; Romano MD PLoS One; 2021; 16(7):e0254686. PubMed ID: 34270622 [TBL] [Abstract][Full Text] [Related]
19. Environmental heterogeneity decreases reproductive success via effects on foraging behaviour. Trevail AM; Green JA; Sharples J; Polton JA; Miller PI; Daunt F; Owen E; Bolton M; Colhoun K; Newton S; Robertson G; Patrick SC Proc Biol Sci; 2019 Jun; 286(1904):20190795. PubMed ID: 31161906 [TBL] [Abstract][Full Text] [Related]
20. Within and between species competition in a seabird community: statistical exploration and modeling of time-series data. Durant JM; Krasnov YV; Nikolaeva NG; Stenseth NC Oecologia; 2012 Jul; 169(3):685-94. PubMed ID: 22179331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]