These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 18488635)

  • 41. Catchment controls of denitrification and nitrous oxide production rates in headwater remediated agricultural streams.
    Hallberg L; Hallin S; Bieroza M
    Sci Total Environ; 2022 Sep; 838(Pt 3):156513. PubMed ID: 35679930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fine Sediment Removal Influences Biogeochemical Processes in a Gravel-bottomed Stream.
    Morgan JA; Royer TV; White JR
    Environ Manage; 2019 Sep; 64(3):258-271. PubMed ID: 31359094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of a denitrification wall to reduce surface water nitrogen loads.
    Schmidt CA; Clark MW
    J Environ Qual; 2012; 41(3):724-31. PubMed ID: 22565254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands.
    Kellogg DQ; Gold AJ; Groffman PM; Addy K; Stolt MH; Blazejewski G
    J Environ Qual; 2005; 34(2):524-33. PubMed ID: 15758105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Denitrification and a nitrogen budget of created riparian wetlands.
    Batson JA; Mander U; Mitsch WJ
    J Environ Qual; 2012; 41(6):2024-32. PubMed ID: 23128759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of nitrate sources and the percent contribution of bacterial denitrification in hyporheic zone using isotope fractionation technique and multi-linear regression analysis.
    Meghdadi A; Javar N
    J Environ Manage; 2018 Sep; 222():54-65. PubMed ID: 29802986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Small Reservoirs as a Beneficial Management Practice for Nitrogen Removal.
    Gooding RM; Baulch HM
    J Environ Qual; 2017 Jan; 46(1):96-104. PubMed ID: 28177420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France).
    Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G
    Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.
    Wolf KL; Noe GB; Ahn C
    J Environ Qual; 2013 Jul; 42(4):1245-55. PubMed ID: 24216376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A method to quantify and value floodplain sediment and nutrient retention ecosystem services.
    Hopkins KG; Noe GB; Franco F; Pindilli EJ; Gordon S; Metes MJ; Claggett PR; Gellis AC; Hupp CR; Hogan DM
    J Environ Manage; 2018 Aug; 220():65-76. PubMed ID: 29758400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ push-pull method to determine ground water denitrification in riparian zones.
    Addy K; Kellogg DQ; Gold AJ; Groffman PM; Ferendo G; Sawyer C
    J Environ Qual; 2002; 31(3):1017-24. PubMed ID: 12026069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments.
    Kreiling RM; Bartsch LA; Perner PM; Hlavacek EJ; Christensen VG
    Environ Manage; 2021 Aug; 68(2):279-293. PubMed ID: 34105016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogen sources and cycling revealed by dual isotopes of nitrate in a complex urbanized environment.
    Archana A; Thibodeau B; Geeraert N; Xu MN; Kao SJ; Baker DM
    Water Res; 2018 Oct; 142():459-470. PubMed ID: 29913387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications.
    Cheng L; Li X; Lin X; Hou L; Liu M; Li Y; Liu S; Hu X
    Environ Pollut; 2016 Dec; 219():545-554. PubMed ID: 27352764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The potential of large floodplains to remove nitrate in river basins - The Danube case.
    Tschikof M; Gericke A; Venohr M; Weigelhofer G; Bondar-Kunze E; Kaden US; Hein T
    Sci Total Environ; 2022 Oct; 843():156879. PubMed ID: 35753454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Land-use controls on sources and processing of nitrate in small watersheds: insights from dual isotopic analysis.
    Barnes RT; Raymond PA
    Ecol Appl; 2010 Oct; 20(7):1961-78. PubMed ID: 21049883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function.
    Bott TL; Jackson JK; McTammany ME; Newbold JD; Rier ST; Sweeney BW; Battle JM
    Ecol Appl; 2012 Dec; 22(8):2144-63. PubMed ID: 23387116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Factors Affecting Nitrate Concentrations in Stream Base Flow.
    Wherry SA; Tesoriero AJ; Terziotti S
    Environ Sci Technol; 2021 Jan; 55(2):902-911. PubMed ID: 33356185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrogen sources, transport and processing in peri-urban floodplains.
    Gooddy DC; Macdonald DM; Lapworth DJ; Bennett SA; Griffiths KJ
    Sci Total Environ; 2014 Oct; 494-495():28-38. PubMed ID: 25029502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.