BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 18489126)

  • 1. Acoustophoresis in wet-etched glass chips.
    Evander M; Lenshof A; Laurell T; Nilsson J
    Anal Chem; 2008 Jul; 80(13):5178-85. PubMed ID: 18489126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase.
    Blas M; Delaunay N; Rocca JL
    J Sep Sci; 2007 Nov; 30(17):3043-9. PubMed ID: 17924367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on band dispersion in channels structured with micropillars.
    De Pra M; Kok WT; Gardeniers JG; Desmet G; Eeltink S; van Nieuwkasteele JW; Schoenmakers PJ
    Anal Chem; 2006 Sep; 78(18):6519-25. PubMed ID: 16970329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropillar array chip for integrated white blood cell isolation and PCR.
    Panaro NJ; Lou XJ; Fortina P; Kricka LJ; Wilding P
    Biomol Eng; 2005 Feb; 21(6):157-62. PubMed ID: 15748689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection.
    Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S
    Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomplexing biofluids using microchip based acoustophoresis.
    Augustsson P; Persson J; Ekström S; Ohlin M; Laurell T
    Lab Chip; 2009 Mar; 9(6):810-8. PubMed ID: 19255663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A one-step protocol for the chemical derivatisation of glass microfluidic devices.
    Wootton RC; deMello AJ
    Lab Chip; 2006 Apr; 6(4):471-3. PubMed ID: 16572208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection enhancement in nano-channels using micro-machined silicon groove.
    Fekete V; Clicq D; De Malsche W; Gardeniers H; Desmet G
    J Chromatogr A; 2006 Oct; 1130(1):151-7. PubMed ID: 16797564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the local pressure amplitude in microchannel acoustophoresis.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Lab Chip; 2010 Mar; 10(5):563-70. PubMed ID: 20162231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multilevel Lab on chip platform for DNA analysis.
    Marasso SL; Giuri E; Canavese G; Castagna R; Quaglio M; Ferrante I; Perrone D; Cocuzza M
    Biomed Microdevices; 2011 Feb; 13(1):19-27. PubMed ID: 20827509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coating of powder-blasted channels for high-performance microchip electrophoresis.
    Belder D; Kohler F; Ludwig M; Tolba K; Piehl N
    Electrophoresis; 2006 Aug; 27(16):3277-83. PubMed ID: 16858723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-generation hybrid MEMS gas chromatograph.
    Lu CJ; Steinecker WH; Tian WC; Oborny MC; Nichols JM; Agah M; Potkay JA; Chan HK; Driscoll J; Sacks RD; Wise KD; Pang SW; Zellers ET
    Lab Chip; 2005 Oct; 5(10):1123-31. PubMed ID: 16175269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.