BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 18489188)

  • 21. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method.
    Izquierdo P; Feng J; Esquena J; Tadros TF; Dederen JC; Garcia MJ; Azemar N; Solans C
    J Colloid Interface Sci; 2005 May; 285(1):388-94. PubMed ID: 15797437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution.
    Garti N; Avrahami M; Aserin A
    J Colloid Interface Sci; 2006 Jul; 299(1):352-65. PubMed ID: 16529763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of concentrated nanoemulsions.
    Graves S; Meleson K; Wilking J; Lin MY; Mason TG
    J Chem Phys; 2005 Apr; 122(13):134703. PubMed ID: 15847485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Small-angle neutron scattering of percolative perfluoropolyether water in oil microemulsions.
    Laurati M; Gambi CM; Giordano R; Baglioni P; Teixeira J
    J Phys Chem B; 2010 Mar; 114(11):3855-62. PubMed ID: 20199090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems.
    Kini GC; Biswal SL; Wong MS; Miller CA
    J Colloid Interface Sci; 2012 Nov; 385(1):111-21. PubMed ID: 22892335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleation of an oil phase in a nonionic microemulsion-containing chlorinated oil upon systematic temperature quench.
    Deen GR; Pedersen JS
    J Phys Chem B; 2010 Jun; 114(23):7769-76. PubMed ID: 20491492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size, shape, and charge of salt-free catanionic microemulsion droplets: a small-angle neutron scattering and modeling study.
    Silva BF; Marques EF; Olsson U; Linse P
    J Phys Chem B; 2009 Jul; 113(30):10230-9. PubMed ID: 19588894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation and stability of nano-emulsions.
    Tadros T; Izquierdo P; Esquena J; Solans C
    Adv Colloid Interface Sci; 2004 May; 108-109():303-18. PubMed ID: 15072948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water-in-oil-in-water double nanoemulsion induced by CO(2).
    Zhao Y; Zhang J; Wang Q; Li J; Han B
    Phys Chem Chem Phys; 2011 Jan; 13(2):684-9. PubMed ID: 21031206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interparticle interactions in concentrate water-oil emulsions.
    Mishchuk NA; Sanfeld A; Steinchen A
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):129-57. PubMed ID: 15581558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system.
    Solè I; Maestro A; Gonzalez C; Solans C; Gutiérrez JM
    Langmuir; 2006 Sep; 22(20):8326-32. PubMed ID: 16981744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An attempt to detect bicontinuity from SANS data.
    Freiberger N; Moitzi C; de Campo L; Glatter O
    J Colloid Interface Sci; 2007 Aug; 312(1):59-67. PubMed ID: 17547926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.
    Verruto VJ; Kilpatrick PK
    Langmuir; 2008 Nov; 24(22):12807-22. PubMed ID: 18947210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication.
    Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD
    J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoemulsion formation by phase inversion emulsification: on the nature of inversion.
    Sajjadi S
    Langmuir; 2006 Jun; 22(13):5597-603. PubMed ID: 16768482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of nanoemulsions for intravenous delivery of rifampicin.
    Ahmed M; Ramadan W; Rambhu D; Shakeel F
    Pharmazie; 2008 Nov; 63(11):806-11. PubMed ID: 19069240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheology and stability of oil-in-water nanoemulsions stabilised by anionic surfactant and gelatin 2) addition of homologous series of sugar-based co-surfactants.
    Howe AM; Pitt AR
    Adv Colloid Interface Sci; 2008 Dec; 144(1-2):30-7. PubMed ID: 18842252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the co-surfactant nature in soybean w/o microemulsions.
    Mendonça CR; Silva YP; Böckel WJ; Simó-Alfonso EF; Ramis-Ramos G; Piatnicki CM; Bica CI
    J Colloid Interface Sci; 2009 Sep; 337(2):579-85. PubMed ID: 19564025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications.
    Sadurní N; Solans C; Azemar N; García-Celma MJ
    Eur J Pharm Sci; 2005 Dec; 26(5):438-45. PubMed ID: 16153811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.