BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18490009)

  • 1. Cryopreservation of carotid artery segments via vitrification subject to marginal thermal conditions: correlation of freezing visualization with functional recovery.
    Baicu S; Taylor MJ; Chen Z; Rabin Y
    Cryobiology; 2008 Aug; 57(1):1-8. PubMed ID: 18490009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitrification of Carotid Artery Segments: An Integrated Study of Thermophysical Events and Functional Recovery Toward Scale-Up for Clinical Applications.
    Baicu S; Taylor MJ; Chen Z; Rabin Y
    Cell Preserv Technol; 2006; 4(4):236-244. PubMed ID: 18185850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.
    Mazur P; Seki S
    Cryobiology; 2011 Feb; 62(1):1-7. PubMed ID: 21055397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.
    Manuchehrabadi N; Gao Z; Zhang J; Ring HL; Shao Q; Liu F; McDermott M; Fok A; Rabin Y; Brockbank KG; Garwood M; Haynes CL; Bischof JC
    Sci Transl Med; 2017 Mar; 9(379):. PubMed ID: 28251904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of crystallization during rewarming in suboptimal vitrification conditions: a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2021 Dec; 103():70-80. PubMed ID: 34543621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new cryomacroscope device (Type III) for visualization of physical events in cryopreservation with applications to vitrification and synthetic ice modulators.
    Rabin Y; Taylor MJ; Feig JS; Baicu S; Chen Z
    Cryobiology; 2013 Dec; 67(3):264-73. PubMed ID: 23993920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of organs by vitrification: perspectives and recent advances.
    Fahy GM; Wowk B; Wu J; Phan J; Rasch C; Chang A; Zendejas E
    Cryobiology; 2004 Apr; 48(2):157-78. PubMed ID: 15094092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of cooling and warming rates in vitrification-based plant cryopreservation protocols.
    Teixeira AS; González-Benito ME; Molina-García AD
    Biotechnol Prog; 2014; 30(5):1177-84. PubMed ID: 24933257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Specific Heat and Crystallization in VS55, DP6, and M22 Cryoprotectant Systems With and Without Sucrose.
    Phatak S; Natesan H; Choi J; Brockbank KGM; Bischof JC
    Biopreserv Biobank; 2018 Aug; 16(4):270-277. PubMed ID: 29958001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parasite cryopreservation by vitrification.
    James ER
    Cryobiology; 2004 Dec; 49(3):201-10. PubMed ID: 15615606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved vitrification solutions based on the predictability of vitrification solution toxicity.
    Fahy GM; Wowk B; Wu J; Paynter S
    Cryobiology; 2004 Feb; 48(1):22-35. PubMed ID: 14969679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of endothelial function after vitrification of cornea at -110 degrees C.
    Armitage WJ; Hall SC; Routledge C
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2160-4. PubMed ID: 12091411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles of Ice-Free Cryopreservation by Vitrification.
    Fahy GM; Wowk B
    Methods Mol Biol; 2021; 2180():27-97. PubMed ID: 32797408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-strain measurements and viscoelastic response of blood vessels cryopreserved by vitrification.
    Jimenez Rios JL; Steif PS; Rabin Y
    Ann Biomed Eng; 2007 Dec; 35(12):2077-86. PubMed ID: 17828592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure.
    Seki S; Mazur P
    Cryobiology; 2009 Aug; 59(1):75-82. PubMed ID: 19427303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreservation of the ovary by vitrification as an alternative to slow-cooling protocols.
    Courbiere B; Odagescu V; Baudot A; Massardier J; Mazoyer C; Salle B; Lornage J
    Fertil Steril; 2006 Oct; 86(4 Suppl):1243-51. PubMed ID: 16978623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.
    Choi J; Bischof JC
    Cryobiology; 2010 Feb; 60(1):52-70. PubMed ID: 19948163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal expansion of the cryoprotectant cocktail DP6 combined with synthetic ice modulators in presence and absence of biological tissues.
    Eisenberg DP; Taylor MJ; Rabin Y
    Cryobiology; 2012 Oct; 65(2):117-25. PubMed ID: 22579521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.