These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18490046)

  • 1. Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration.
    Gronewold AD; Wolpert RL
    Water Res; 2008 Jul; 42(13):3327-34. PubMed ID: 18490046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing uncertainty in fecal indicator bacteria dark inactivation rates.
    Gronewold AD; Myers L; Swall JL; Noble RT
    Water Res; 2011 Jan; 45(2):652-64. PubMed ID: 20843534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the relationship between two different methods for enumeration fecal indicator bacteria: colony-forming unit and most probable number.
    Cho KH; Han D; Park Y; Lee SW; Cha SM; Kang JH; Kim JH
    J Environ Sci (China); 2010; 22(6):846-50. PubMed ID: 20923095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of indicator bacteria in Canyon Lake, California.
    Davis K; Anderson MA; Yates MV
    Water Res; 2005 Apr; 39(7):1277-88. PubMed ID: 15862327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source specific fecal bacteria modeling using soil and water assessment tool model.
    Parajuli PB; Mankin KR; Barnes PL
    Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An assessment of fecal indicator bacteria-based water quality standards.
    Gronewold AD; Borsuk ME; Wolpert RL; Reckhow KH
    Environ Sci Technol; 2008 Jul; 42(13):4676-82. PubMed ID: 18677990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The determination of total coliform and fecal coliform bacteria for quality control of bathing waters using the EC guideline 76/160 most probable number and BRILA-MUG broth].
    Müller HE; Aleksic S; Bockemühl J; Havemeister G; Heinemeyer EA; Von Pritzbuer E
    Zentralbl Hyg Umweltmed; 1990 May; 189(6):543-53. PubMed ID: 2383351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship and variation of qPCR and culturable Enterococci estimates in ambient surface waters are predictable.
    Whitman RL; Ge Z; Nevers MB; Boehm AB; Chern EC; Haugland RA; Lukasik AM; Molina M; Przybyla-Kelly K; Shively DA; White EM; Zepp RG; Byappanahalli MN
    Environ Sci Technol; 2010 Jul; 44(13):5049-54. PubMed ID: 20527919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The seasonality of fecal coliform bacteria pollution and its influence on closures of shellfish harvesting areas in Mississippi Sound.
    Chigbu P; Gordon S; Tchounwou PB
    Int J Environ Res Public Health; 2005 Aug; 2(2):362-73. PubMed ID: 16705840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of BGB-MUG and LSTB-MUG in microbiological surveillance of recreational waters.
    Höller C; Havemeister G; Gundermann KO
    Zentralbl Hyg Umweltmed; 1995 Dec; 198(2):138-51. PubMed ID: 9353533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the Pearl model to analyze fecal coliform data from conditionally approved shellfish harvest areas in seven Texas bays.
    Conte FS; Ahmadi A
    J Environ Health; 2014 Sep; 77(2):22-9. PubMed ID: 25226781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters.
    Jenkins MB; Endale DM; Fisher DS
    J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnitude of faecal contamination of rural community well waters in Nigeria and its relationship to well and water properties.
    Ogan MT
    Zentralbl Hyg Umweltmed; 1989 Dec; 189(3):277-83. PubMed ID: 2627253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiological assessment of house and imported bottled water by comparison of bacterial endotoxin concentration, heterotrophic plate count, and fecal coliform count.
    Reyes MI; Pérez CM; Negrón EL
    P R Health Sci J; 2008 Mar; 27(1):21-6. PubMed ID: 18450229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial contamination of blenderized whole food and commercial enteral tube feedings in the Philippines.
    Sullivan MM; Sorreda-Esguerra P; Santos EE; Platon BG; Castro CG; Idrisalman ER; Chen NR; Shott S; Comer GM
    J Hosp Infect; 2001 Dec; 49(4):268-73. PubMed ID: 11740875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiating Enterococcus concentration spatial, temporal, and analytical variability in recreational waters.
    Gronewold AD; Stow CA; Vijayavel K; Moynihan MA; Kashian DR
    Water Res; 2013 May; 47(7):2141-52. PubMed ID: 23452911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterococci vs coliforms as a possible fecal contamination indicator: baseline data for Karachi.
    Hussain M; Rasool SA; Khan MT; Wajid A
    Pak J Pharm Sci; 2007 Apr; 20(2):107-11. PubMed ID: 17416563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial quality of tilapia reared in fecal-contaminated ponds.
    El-Shafai SA; Gijzen HJ; Nasr FA; El-Gohary FA
    Environ Res; 2004 Jun; 95(2):231-8. PubMed ID: 15147929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential modeling of fecal coliform removals in a full-scale activated-sludge wastewater treatment plant using an evolutionary process model induction system.
    Suh CW; Lee JW; Hong YS; Shin HS
    Water Res; 2009 Jan; 43(1):137-47. PubMed ID: 18930305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation tube test statistics for direct water sampling and comments on the Thomas formula.
    Nawalany M; Loga M
    J Water Health; 2010 Sep; 8(3):431-7. PubMed ID: 20375472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.