These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 18490265)
1. Cross-species de novo identification of cis-regulatory modules with GibbsModule: application to gene regulation in embryonic stem cells. Xie D; Cai J; Chia NY; Ng HH; Zhong S Genome Res; 2008 Aug; 18(8):1325-35. PubMed ID: 18490265 [TBL] [Abstract][Full Text] [Related]
2. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets. Niu M; Tabari ES; Su Z BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502 [TBL] [Abstract][Full Text] [Related]
3. Synthetic and genomic regulatory elements reveal aspects of King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA Elife; 2020 Feb; 9():. PubMed ID: 32043966 [TBL] [Abstract][Full Text] [Related]
4. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. Sharov AA; Masui S; Sharova LV; Piao Y; Aiba K; Matoba R; Xin L; Niwa H; Ko MS BMC Genomics; 2008 Jun; 9():269. PubMed ID: 18522731 [TBL] [Abstract][Full Text] [Related]
5. Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation. Rouault H; Santolini M; Schweisguth F; Hakim V Nucleic Acids Res; 2014 Jun; 42(10):6128-45. PubMed ID: 24682824 [TBL] [Abstract][Full Text] [Related]
6. CompMoby: comparative MobyDick for detection of cis-regulatory motifs. Chaivorapol C; Melton C; Wei G; Yeh RF; Ramalho-Santos M; Blelloch R; Li H BMC Bioinformatics; 2008 Oct; 9():455. PubMed ID: 18950538 [TBL] [Abstract][Full Text] [Related]
7. Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection. Sun H; Guns T; Fierro AC; Thorrez L; Nijssen S; Marchal K Nucleic Acids Res; 2012 Jul; 40(12):e90. PubMed ID: 22422841 [TBL] [Abstract][Full Text] [Related]
8. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells. Hutchins AP; Choo SH; Mistri TK; Rahmani M; Woon CT; Ng CK; Jauch R; Robson P Stem Cells; 2013 Feb; 31(2):269-81. PubMed ID: 23169531 [TBL] [Abstract][Full Text] [Related]
9. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Chew JL; Loh YH; Zhang W; Chen X; Tam WL; Yeap LS; Li P; Ang YS; Lim B; Robson P; Ng HH Mol Cell Biol; 2005 Jul; 25(14):6031-46. PubMed ID: 15988017 [TBL] [Abstract][Full Text] [Related]
11. Identification of Lineage-Specific Cis-Regulatory Modules Associated with Variation in Transcription Factor Binding and Chromatin Activity Using Ornstein-Uhlenbeck Models. Naval-Sánchez M; Potier D; Hulselmans G; Christiaens V; Aerts S Mol Biol Evol; 2015 Sep; 32(9):2441-55. PubMed ID: 25944915 [TBL] [Abstract][Full Text] [Related]
12. MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs. Hu J; Hu H; Li X Nucleic Acids Res; 2008 Aug; 36(13):4488-97. PubMed ID: 18606616 [TBL] [Abstract][Full Text] [Related]
13. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the FGF-4 gene by a complex distal enhancer that functions in part as an enhanceosome. Luster TA; Rizzino A Gene; 2003 Dec; 323():163-72. PubMed ID: 14659890 [TBL] [Abstract][Full Text] [Related]
16. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. Maruyama M; Ichisaka T; Nakagawa M; Yamanaka S J Biol Chem; 2005 Jul; 280(26):24371-9. PubMed ID: 15863505 [TBL] [Abstract][Full Text] [Related]
17. ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules. Sun H; De Bie T; Storms V; Fu Q; Dhollander T; Lemmens K; Verstuyf A; De Moor B; Marchal K BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S30. PubMed ID: 19208131 [TBL] [Abstract][Full Text] [Related]
18. Computational detection of cis -regulatory modules. Aerts S; Van Loo P; Thijs G; Moreau Y; De Moor B Bioinformatics; 2003 Oct; 19 Suppl 2():ii5-14. PubMed ID: 14534164 [TBL] [Abstract][Full Text] [Related]
19. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs. Girgis HZ; Ovcharenko I BMC Bioinformatics; 2012 Feb; 13():25. PubMed ID: 22313678 [TBL] [Abstract][Full Text] [Related]
20. Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors. Yu X; Lin J; Zack DJ; Qian J BMC Bioinformatics; 2007 Nov; 8():437. PubMed ID: 17996093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]