BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

748 related articles for article (PubMed ID: 18490396)

  • 1. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes.
    Arikawa K; Iwanaga T; Wakakuwa M; Kinoshita M
    Front Neural Circuits; 2017; 11():96. PubMed ID: 29238294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adult stemmata of the butterfly Vanessa cardui express UV and green opsin mRNAs.
    Briscoe AD; White RH
    Cell Tissue Res; 2005 Jan; 319(1):175-9. PubMed ID: 15503147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora.
    Wakakuwa M; Stavenga DG; Kurasawa M; Arikawa K
    J Exp Biol; 2004 Jul; 207(Pt 16):2803-10. PubMed ID: 15235009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green.
    Sison-Mangus MP; Briscoe AD; Zaccardi G; Knüttel H; Kelber A
    J Exp Biol; 2008 Feb; 211(Pt 3):361-9. PubMed ID: 18203991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui.
    Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH
    J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies.
    Frentiu FD; Bernard GD; Sison-Mangus MP; Brower AV; Briscoe AD
    Mol Biol Evol; 2007 Sep; 24(9):2016-28. PubMed ID: 17609538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina.
    Spaethe J; Briscoe AD
    J Exp Biol; 2005 Jun; 208(Pt 12):2347-61. PubMed ID: 15939775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.
    McCulloch KJ; Osorio D; Briscoe AD
    J Exp Biol; 2016 Aug; 219(Pt 15):2377-87. PubMed ID: 27247318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eyes with basic dorsal and specific ventral regions in the glacial Apollo, Parnassius glacialis (Papilionidae).
    Awata H; Matsushita A; Wakakuwa M; Arikawa K
    J Exp Biol; 2010 Dec; 213(Pt 23):4023-9. PubMed ID: 21075944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata.
    Oba Y; Kainuma T
    Gene; 2009 May; 436(1-2):66-70. PubMed ID: 19232386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color discrimination in the red range with only one long-wavelength sensitive opsin.
    Zaccardi G; Kelber A; Sison-Mangus MP; Briscoe AD
    J Exp Biol; 2006 May; 209(Pt 10):1944-55. PubMed ID: 16651559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate.
    Awata H; Wakakuwa M; Arikawa K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Apr; 195(4):401-8. PubMed ID: 19224222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting the navigational clock to sun compass input in monarch butterfly brain.
    Sauman I; Briscoe AD; Zhu H; Shi D; Froy O; Stalleicken J; Yuan Q; Casselman A; Reppert SM
    Neuron; 2005 May; 46(3):457-67. PubMed ID: 15882645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.
    Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.