BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 18490811)

  • 21. Development of a fibre-optic dosemeter to measure the skin dose and percentage depth dose in the build-up region of therapeutic photon beams.
    Kim KA; Yoo WJ; Jang KW; Moon J; Han KT; Jeon D; Park JY; Cha EJ; Lee B
    Radiat Prot Dosimetry; 2013 Mar; 153(3):294-9. PubMed ID: 22764176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration.
    Beddar AS; Mackie TR; Attix FH
    Phys Med Biol; 1992 Oct; 37(10):1883-900. PubMed ID: 1438554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy.
    Linares Rosales HM; Duguay-Drouin P; Archambault L; Beddar S; Beaulieu L
    Med Phys; 2019 May; 46(5):2412-2421. PubMed ID: 30891803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry.
    Galavis PE; Hu L; Holmes S; Das IJ
    Med Phys; 2019 May; 46(5):2468-2476. PubMed ID: 30897221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise.
    Beddar AS; Suchowerska N; Law SH
    Phys Med Biol; 2004 Mar; 49(5):783-90. PubMed ID: 15070202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.
    Kroll F; Pawelke J; Karsch L
    Med Phys; 2013 Aug; 40(8):082104. PubMed ID: 23927341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of plastic scintillating fibres to surface dosimetry in megavoltage photon and electron beams: considerations for Cerenkov correction.
    Monajemi TT; Ruiz EA
    Phys Med Biol; 2018 Sep; 63(18):185003. PubMed ID: 30101759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and characterization of a stemless plastic scintillation detector.
    Hupman MA; Monajemi T; Valitova I; Hill IG; Syme A
    Med Phys; 2020 Nov; 47(11):5882-5889. PubMed ID: 32966652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporally separating Cherenkov radiation in a scintillator probe exposed to a pulsed X-ray beam.
    Archer J; Madden L; Li E; Carolan M; Petasecca M; Metcalfe P; Rosenfeld A
    Phys Med; 2017 Oct; 42():185-188. PubMed ID: 29173913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water equivalent plastic scintillation detectors in radiation therapy.
    Beddar AS
    Radiat Prot Dosimetry; 2006; 120(1-4):1-6. PubMed ID: 16882685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry.
    Jang KW; Yoo WJ; Shin SH; Shin D; Lee B
    Opt Express; 2012 Jun; 20(13):13907-14. PubMed ID: 22714456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.
    Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M
    Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of accelerators for the research and development of scintillators.
    Shibuya K; Koshimizu M; Asai K; Muroya Y; Katsumura Y; Inadama N; Yoshida E; Nishikido F; Yamaya T; Murayama H
    Rev Sci Instrum; 2007 Aug; 78(8):083303. PubMed ID: 17764319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hybrid radiation detector for simultaneous spatial and temporal dosimetry.
    Poole C; Trapp JV; Kenny J; Kairn T; Williams K; Taylor M; Franich R; Langton CM
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):327-32. PubMed ID: 21678102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The practical application of scintillation dosimetry in small-field photon-beam radiotherapy.
    Burke E; Poppinga D; Schönfeld AA; Harder D; Poppe B; Looe HK
    Z Med Phys; 2017 Dec; 27(4):324-333. PubMed ID: 28342596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method to remove residual signals in fibre optic luminescence dosimeters.
    Lee JJ; Liu PZ; McKenzie DR; Suchowerska N
    Phys Med Biol; 2013 Mar; 58(5):1581-90. PubMed ID: 23417084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monochromatic beam characterization for Auger electron dosimetry and radiotherapy.
    Dugas JP; Oves SD; Sajo E; Matthews KL; Ham K; Hogstrom KR
    Eur J Radiol; 2008 Dec; 68(3 Suppl):S137-41. PubMed ID: 18599232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam.
    Moon J; Jang KW; Yoo WJ; Han KT; Park JY; Lee B
    Appl Radiat Isot; 2012 Nov; 70(11):2627-30. PubMed ID: 22944534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A scintillating gas detector for 2D dose measurements in clinical carbon beams.
    Seravalli E; de Boer M; Geurink F; Huizenga J; Kreuger R; Schippers JM; van Eijk CW; Voss B
    Phys Med Biol; 2008 Sep; 53(17):4651-65. PubMed ID: 18695295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.