These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18491047)

  • 21. The molecular acrobatics of arrestin activation.
    Gurevich VV; Gurevich EV
    Trends Pharmacol Sci; 2004 Feb; 25(2):105-11. PubMed ID: 15102497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking.
    Stalheim L; Ding Y; Gullapalli A; Paing MM; Wolfe BL; Morris DR; Trejo J
    Mol Pharmacol; 2005 Jan; 67(1):78-87. PubMed ID: 15475570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arrestins: ubiquitous regulators of cellular signaling pathways.
    Gurevich EV; Gurevich VV
    Genome Biol; 2006; 7(9):236. PubMed ID: 17020596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins.
    Wu N; Hanson SM; Francis DJ; Vishnivetskiy SA; Thibonnier M; Klug CS; Shoham M; Gurevich VV
    J Mol Biol; 2006 Dec; 364(5):955-63. PubMed ID: 17054984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short Arrestin-3-Derived Peptides Activate JNK3 in Cells.
    Perry-Hauser NA; Kaoud TS; Stoy H; Zhan X; Chen Q; Dalby KN; Iverson TM; Gurevich VV; Gurevich EV
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications.
    Shenoy SK
    Handb Exp Pharmacol; 2014; 219():187-203. PubMed ID: 24292831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains.
    Zhan X; Perez A; Gimenez LE; Vishnivetskiy SA; Gurevich VV
    Cell Signal; 2014 Apr; 26(4):766-76. PubMed ID: 24412749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation.
    Seo J; Tsakem EL; Breitman M; Gurevich VV
    J Biol Chem; 2011 Aug; 286(32):27894-901. PubMed ID: 21715332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements.
    Zheng C; Weinstein LD; Nguyen KK; Grewal A; Gurevich EV; Gurevich VV
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting arrestin interactions with its partners for therapeutic purposes.
    Gurevich VV; Gurevich EV
    Adv Protein Chem Struct Biol; 2020; 121():169-197. PubMed ID: 32312421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arrestins as regulators of kinases and phosphatases.
    Luttrell LM; Miller WE
    Prog Mol Biol Transl Sci; 2013; 118():115-47. PubMed ID: 23764052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arrestins: structural disorder creates rich functionality.
    Gurevich VV; Gurevich EV; Uversky VN
    Protein Cell; 2018 Dec; 9(12):986-1003. PubMed ID: 29453740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleavage of arrestin-3 by caspases attenuates cell death by precluding arrestin-dependent JNK activation.
    Kook S; Vishnivetskiy SA; Gurevich VV; Gurevich EV
    Cell Signal; 2019 Feb; 54():161-169. PubMed ID: 30529266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr.
    Perez I; Berndt S; Agarwal R; Castro MA; Vishnivetskiy SA; Smith JC; Sanders CR; Gurevich VV; Iverson TM
    J Mol Biol; 2022 Jan; 434(2):167400. PubMed ID: 34902430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes.
    Indrischek H; Prohaska SJ; Gurevich VV; Gurevich EV; Stadler PF
    BMC Evol Biol; 2017 Jul; 17(1):163. PubMed ID: 28683816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Two Non-Visual Arrestins Engage ERK2 Differently.
    Perry-Hauser NA; Hopkins JB; Zhuo Y; Zheng C; Perez I; Schultz KM; Vishnivetskiy SA; Kaya AI; Sharma P; Dalby KN; Chung KY; Klug CS; Gurevich VV; Iverson TM
    J Mol Biol; 2022 Apr; 434(7):167465. PubMed ID: 35077767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of arrestins in development.
    Philipp M; Evron T; Caron MG
    Prog Mol Biol Transl Sci; 2013; 118():225-42. PubMed ID: 23764056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual and both non-visual arrestins in their "inactive" conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm.
    Song X; Raman D; Gurevich EV; Vishnivetskiy SA; Gurevich VV
    J Biol Chem; 2006 Jul; 281(30):21491-21499. PubMed ID: 16737965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extensive shape shifting underlies functional versatility of arrestins.
    Gurevich VV; Gurevich EV
    Curr Opin Cell Biol; 2014 Apr; 27():1-9. PubMed ID: 24680424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Mechanisms of GPCR Signaling: A Structural Perspective.
    Gurevich VV; Gurevich EV
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.