These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18491142)

  • 21. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting associated single-nucleotide polymorphisms on the X chromosome in case control genome-wide association studies.
    Chen Z; Ng HK; Li J; Liu Q; Huang H
    Stat Methods Med Res; 2017 Apr; 26(2):567-582. PubMed ID: 25253574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies.
    Duggal P; Gillanders EM; Holmes TN; Bailey-Wilson JE
    BMC Genomics; 2008 Oct; 9():516. PubMed ID: 18976480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application of network label propagation to rank biomarkers in genome-wide Alzheimer's data.
    Stokes ME; Barmada MM; Kamboh MI; Visweswaran S
    BMC Genomics; 2014 Apr; 15():282. PubMed ID: 24731236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finding unique filter sets in PLATO: a precursor to efficient interaction analysis in GWAS data.
    Grady BJ; Torstenson E; Dudek SM; Giles J; Sexton D; Ritchie MD
    Pac Symp Biocomput; 2010; ():315-26. PubMed ID: 19908384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SNP eQTL status and eQTL density in the adjacent region of the SNP are associated with its statistical significance in GWA studies.
    Gorlov I; Xiao X; Mayes M; Gorlova O; Amos C
    BMC Genet; 2019 Nov; 20(1):85. PubMed ID: 31718536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model.
    Loley C; König IR; Hothorn L; Ziegler A
    Eur J Hum Genet; 2013 Dec; 21(12):1442-8. PubMed ID: 23572026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Association mapping and significance estimation via the coalescent.
    Kimmel G; Karp RM; Jordan MI; Halperin E
    Am J Hum Genet; 2008 Dec; 83(6):675-83. PubMed ID: 19026399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A robust distribution-free test for genetic association studies of quantitative traits.
    Kozlitina J; Schucany WR
    Stat Appl Genet Mol Biol; 2015 Nov; 14(5):443-64. PubMed ID: 26426896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient p-value evaluation for resampling-based tests.
    Yu K; Liang F; Ciampa J; Chatterjee N
    Biostatistics; 2011 Jul; 12(3):582-93. PubMed ID: 21209154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving power for testing genetic association in case-control studies by reducing the alternative space.
    Joo J; Kwak M; Zheng G
    Biometrics; 2010 Mar; 66(1):266-76. PubMed ID: 19397584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ranking of genome-wide association scan signals by different measures.
    Strömberg U; Björk J; Vineis P; Broberg K; Zeggini E
    Int J Epidemiol; 2009 Oct; 38(5):1364-73. PubMed ID: 19734549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association between common variation in 120 candidate genes and breast cancer risk.
    Pharoah PD; Tyrer J; Dunning AM; Easton DF; Ponder BA;
    PLoS Genet; 2007 Mar; 3(3):e42. PubMed ID: 17367212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reclassification of genetic-based risk predictions as GWAS data accumulate.
    Krier J; Barfield R; Green RC; Kraft P
    Genome Med; 2016 Feb; 8(1):20. PubMed ID: 26884246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust test for two-stage design in genome-wide association studies.
    Kwak M; Joo J; Zheng G
    Biometrics; 2009 Dec; 65(4):1288-95. PubMed ID: 19432785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selecting additional tag SNPs for tolerating missing data in genotyping.
    Huang YT; Zhang K; Chen T; Chao KM
    BMC Bioinformatics; 2005 Nov; 6():263. PubMed ID: 16259642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of max and min scores for trend tests for association when the genetic model is unknown.
    Zheng G
    Stat Med; 2003 Aug; 22(16):2657-66. PubMed ID: 12898550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide analysis of single nucleotide polymorphisms in patients with atrophic age-related macular degeneration in oldest old Han Chinese.
    Zhou TQ; Guan HJ; Hu JY
    Genet Mol Res; 2015 Dec; 14(4):17432-8. PubMed ID: 26782385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of clustering and genotype distribution for replication in genome wide association studies: the age-related eye disease study.
    Edwards AO; Fridley BL; James KM; Sharma AK; Cunningham JM; Tosakulwong N
    PLoS One; 2008; 3(11):e3813. PubMed ID: 19043567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.