These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 18491165)

  • 1. Maps of interaural time difference in the chicken's brainstem nucleus laminaris.
    Köppl C; Carr CE
    Biol Cybern; 2008 Jun; 98(6):541-59. PubMed ID: 18491165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
    Palanca-Castan N; Köppl C
    Front Neural Circuits; 2015; 9():43. PubMed ID: 26347616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
    Kettler L; Carr CE
    J Neurosci; 2019 May; 39(20):3882-3896. PubMed ID: 30886018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maps of ITD in the nucleus laminaris of the barn owl.
    Carr C; Shah S; Ashida G; McColgan T; Wagner H; Kuokkanen PT; Kempter R; Köppl C
    Adv Exp Med Biol; 2013; 787():215-22. PubMed ID: 23716226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization.
    Nishino E; Yamada R; Kuba H; Hioki H; Furuta T; Kaneko T; Ohmori H
    J Neurosci; 2008 Jul; 28(28):7153-64. PubMed ID: 18614685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl.
    Carr CE; Wang T; Kraemer I; Capshaw G; Ashida G; Köppl C; Kempter R; Kuokkanen PT
    J Neurosci; 2024 Jan; 44(1):. PubMed ID: 37989591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coding interaural time differences at low best frequencies in the barn owl.
    Carr CE; Köppl C
    J Physiol Paris; 2004; 98(1-3):99-112. PubMed ID: 15477025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Hemispheric ITD Tuning from the Readout of a Neural Map: Commonalities of Proposed Coding Schemes in Birds and Mammals.
    Peña JL; Cazettes F; Beckert MV; Fischer BJ
    J Neurosci; 2019 Nov; 39(46):9053-9061. PubMed ID: 31570537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit.
    Fitzpatrick DC; Kuwada S; Batra R; Trahiotis C
    J Neurophysiol; 1995 Dec; 74(6):2469-86. PubMed ID: 8747207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circuit for detection of interaural time differences in the brain stem of the barn owl.
    Carr CE; Konishi M
    J Neurosci; 1990 Oct; 10(10):3227-46. PubMed ID: 2213141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo Recordings from Low-Frequency Nucleus Laminaris in the Barn Owl.
    Palanca-Castan N; Köppl C
    Brain Behav Evol; 2015; 85(4):271-86. PubMed ID: 26182962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.
    Vonderschen K; Wagner H
    J Neurosci; 2012 Apr; 32(17):5911-23. PubMed ID: 22539852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris.
    Drucker B; Goldwyn JH
    Biol Cybern; 2023 Apr; 117(1-2):143-162. PubMed ID: 37129628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken.
    Köppl C
    J Exp Biol; 2019 Jun; 222(Pt 12):. PubMed ID: 31138639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for opponent-channel coding of interaural time differences in human auditory cortex.
    Magezi DA; Krumbholz K
    J Neurophysiol; 2010 Oct; 104(4):1997-2007. PubMed ID: 20702739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
    Brückner S; Hyson RL
    Eur J Neurosci; 1998 Nov; 10(11):3438-50. PubMed ID: 9824457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.
    Seidl AH; Rubel EW; Harris DM
    J Neurosci; 2010 Jan; 30(1):70-80. PubMed ID: 20053889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal neural population coding of an auditory spatial cue.
    Harper NS; McAlpine D
    Nature; 2004 Aug; 430(7000):682-6. PubMed ID: 15295602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.