These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18491169)

  • 1. Inhibition, not excitation, is the key to multimodal sensory integration.
    Friedel P; van Hemmen JL
    Biol Cybern; 2008 Jun; 98(6):597-618. PubMed ID: 18491169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adaptation of visual and auditory integration in the barn owl superior colliculus with Spike Timing Dependent Plasticity.
    Huo J; Murray A
    Neural Netw; 2009 Sep; 22(7):913-21. PubMed ID: 19084371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping time.
    Leibold C; van Hemmen JL
    Biol Cybern; 2002 Dec; 87(5-6):428-39. PubMed ID: 12461632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning bat LSO neurons to interaural intensity differences through spike-timing dependent plasticity.
    Fontaine B; Peremans H
    Biol Cybern; 2007 Oct; 97(4):261-7. PubMed ID: 17899163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive STDP-based spike pattern learning.
    Masquelier T; Guyonneau R; Thorpe SJ
    Neural Comput; 2009 May; 21(5):1259-76. PubMed ID: 19718815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal bases of perceptual learning revealed by a synaptic balance scheme.
    Hoshino O
    Neural Comput; 2004 Mar; 16(3):563-94. PubMed ID: 15006092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns.
    Hosaka R; Araki O; Ikeguchi T
    Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gated visual input to the central auditory system.
    Gutfreund Y; Zheng W; Knudsen EI
    Science; 2002 Aug; 297(5586):1556-9. PubMed ID: 12202831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome changes associated with instructed learning in the barn owl auditory localization pathway.
    Swofford JA; DeBello WM
    Dev Neurobiol; 2007 Sep; 67(11):1457-77. PubMed ID: 17526003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity.
    Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A
    Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implementation of reinforcement learning based on spike timing dependent plasticity.
    Roberts PD; Santiago RA; Lafferriere G
    Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does non-random spontaneous activity contribute to brain development?
    Thivierge JP
    Neural Netw; 2009 Sep; 22(7):901-12. PubMed ID: 19196491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal codes and sparse representations: a key to understanding rapid processing in the visual system.
    Guyonneau R; Vanrullen R; Thorpe SJ
    J Physiol Paris; 2004; 98(4-6):487-97. PubMed ID: 16275045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning of oscillatory correlated patterns in a cortical network by a STDP-based learning rule.
    Marinaro M; Scarpetta S; Yoshioka M
    Math Biosci; 2007 Jun; 207(2):322-35. PubMed ID: 17306840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency selectivity emerging from spike-timing-dependent plasticity.
    Gilson M; Bürck M; Burkitt AN; van Hemmen JL
    Neural Comput; 2012 Sep; 24(9):2251-79. PubMed ID: 22734488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.