These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18491169)

  • 21. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity.
    Rajan R
    Nat Neurosci; 1998 Jun; 1(2):138-43. PubMed ID: 10195129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits.
    Grossberg S; Versace M
    Brain Res; 2008 Jul; 1218():278-312. PubMed ID: 18533136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillations and spiking pairs: behavior of a neuronal model with STDP learning.
    Shen X; Lin X; De Wilde P
    Neural Comput; 2008 Aug; 20(8):2037-69. PubMed ID: 18336082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Registration of neural maps through value-dependent learning: modeling the alignment of auditory and visual maps in the barn owl's optic tectum.
    Rucci M; Tononi G; Edelman GM
    J Neurosci; 1997 Jan; 17(1):334-52. PubMed ID: 8987759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasticity-induced symmetry relationships between adjacent self-organizing topographic maps.
    Sylvester J; Reggia J
    Neural Comput; 2009 Dec; 21(12):3429-43. PubMed ID: 19764873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive synchronization of activities in a recurrent network.
    Voegtlin T
    Neural Comput; 2009 Jun; 21(6):1749-75. PubMed ID: 19191597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neural circuit model of emotional learning using two pathways with different granularity and speed of information processing.
    Murakoshi K; Saito M
    Biosystems; 2009 Feb; 95(2):150-4. PubMed ID: 18977406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism.
    Wu Q; McGinnity TM; Maguire L; Belatreche A; Glackin B
    Neural Netw; 2008 Nov; 21(9):1318-27. PubMed ID: 18706787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perceptron learning rule derived from spike-frequency adaptation and spike-time-dependent plasticity.
    D'Souza P; Liu SC; Hahnloser RH
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4722-7. PubMed ID: 20167805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic plasticity in coupled avian midbrain maps.
    Atwal GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061904. PubMed ID: 15697399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity.
    Aoki T; Aoyagi T
    Neural Comput; 2007 Oct; 19(10):2720-38. PubMed ID: 17716009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does spike timing-dependent synaptic plasticity underlie memory formation?
    Letzkus JJ; Kampa BM; Stuart GJ
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1070-6. PubMed ID: 17714096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anatomical connections suitable for the direct processing of neuronal information of different modalities via the rodent primary auditory cortex.
    Budinger E; Scheich H
    Hear Res; 2009 Dec; 258(1-2):16-27. PubMed ID: 19446016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneously emerging direction selectivity maps in visual cortex through STDP.
    Wenisch OG; Noll J; Hemmen JL
    Biol Cybern; 2005 Oct; 93(4):239-47. PubMed ID: 16195915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Getting to know your neighbors: unsupervised learning of topography from real-world, event-based input.
    Boerlin M; Delbruck T; Eng K
    Neural Comput; 2009 Jan; 21(1):216-38. PubMed ID: 19431283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional selection of adaptive auditory space map by GABAA-mediated inhibition.
    Zheng W; Knudsen EI
    Science; 1999 May; 284(5416):962-5. PubMed ID: 10320376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reinforcement learning with modulated spike timing dependent synaptic plasticity.
    Farries MA; Fairhall AL
    J Neurophysiol; 2007 Dec; 98(6):3648-65. PubMed ID: 17928565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial relationships of visuomotor transformations in the superior colliculus map.
    Marino RA; Rodgers CK; Levy R; Munoz DP
    J Neurophysiol; 2008 Nov; 100(5):2564-76. PubMed ID: 18753320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Input-driven oscillations in networks with excitatory and inhibitory neurons with dynamic synapses.
    Marinazzo D; Kappen HJ; Gielen SC
    Neural Comput; 2007 Jul; 19(7):1739-65. PubMed ID: 17521278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.