These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 18491319)
1. Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques. Dreisbach A; Otto A; Becher D; Hammer E; Teumer A; Gouw JW; Hecker M; Völker U Proteomics; 2008 May; 8(10):2062-76. PubMed ID: 18491319 [TBL] [Abstract][Full Text] [Related]
2. Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. Soufi B; Kumar C; Gnad F; Mann M; Mijakovic I; Macek B J Proteome Res; 2010 Jul; 9(7):3638-46. PubMed ID: 20509597 [TBL] [Abstract][Full Text] [Related]
3. From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Hahne H; Wolff S; Hecker M; Becher D Proteomics; 2008 Oct; 8(19):4123-36. PubMed ID: 18763711 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. Bunai K; Yamane K J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):227-36. PubMed ID: 15652812 [TBL] [Abstract][Full Text] [Related]
5. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. Wolff S; Antelmann H; Albrecht D; Becher D; Bernhardt J; Bron S; Büttner K; van Dijl JM; Eymann C; Otto A; Tam le T; Hecker M J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):129-40. PubMed ID: 17055787 [TBL] [Abstract][Full Text] [Related]
6. Cysteinyl-tagging of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. Mitra SK; Goshe MB Methods Mol Biol; 2009; 528():311-26. PubMed ID: 19153702 [TBL] [Abstract][Full Text] [Related]
8. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis. Völker U; Hecker M Cell Microbiol; 2005 Aug; 7(8):1077-85. PubMed ID: 16008575 [TBL] [Abstract][Full Text] [Related]
9. Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Harsha HC; Molina H; Pandey A Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819 [TBL] [Abstract][Full Text] [Related]
10. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. Lund R; Leth-Larsen R; Jensen ON; Ditzel HJ J Proteome Res; 2009 Jun; 8(6):3078-90. PubMed ID: 19341246 [TBL] [Abstract][Full Text] [Related]
11. Label-free relative quantitation of prokaryotic proteomes using the accurate mass and time tag approach. Hixson KK Methods Mol Biol; 2009; 492():39-63. PubMed ID: 19241026 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mao S; Luo Y; Bao G; Zhang Y; Li Y; Ma Y Mol Biosyst; 2011 May; 7(5):1660-77. PubMed ID: 21384033 [TBL] [Abstract][Full Text] [Related]
13. Stable isotope labeling by amino acids applied to bacterial cell culture. Soufi B; Macek B Methods Mol Biol; 2014; 1188():9-22. PubMed ID: 25059601 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Hammer E; Bien S; Salazar MG; Steil L; Scharf C; Hildebrandt P; Schroeder HW; Kroemer HK; Völker U; Ritter CA Proteomics; 2010 Jan; 10(1):99-114. PubMed ID: 20017144 [TBL] [Abstract][Full Text] [Related]
15. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Höper D; Bernhardt J; Hecker M Proteomics; 2006 Mar; 6(5):1550-62. PubMed ID: 16440371 [TBL] [Abstract][Full Text] [Related]
16. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Ong SE; Mann M Nat Protoc; 2006; 1(6):2650-60. PubMed ID: 17406521 [TBL] [Abstract][Full Text] [Related]
17. Quantitative proteomics to study mitogen-activated protein kinases. Blagoev B; Mann M Methods; 2006 Nov; 40(3):243-50. PubMed ID: 17071406 [TBL] [Abstract][Full Text] [Related]
18. 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Lanquar V; Kuhn L; Lelièvre F; Khafif M; Espagne C; Bruley C; Barbier-Brygoo H; Garin J; Thomine S Proteomics; 2007 Mar; 7(5):750-4. PubMed ID: 17285564 [TBL] [Abstract][Full Text] [Related]
19. Exploring membrane and cytoplasm proteomic responses of Alkalimonas amylolytica N10 to different external pHs with combination strategy of de novo peptide sequencing. Wang Q; Han H; Xue Y; Qian Z; Meng B; Peng F; Wang Z; Tong W; Zhou C; Wang Q; Guo Y; Li G; Liu S; Ma Y Proteomics; 2009 Mar; 9(5):1254-73. PubMed ID: 19253282 [TBL] [Abstract][Full Text] [Related]
20. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Tjalsma H; van Dijl JM Proteomics; 2005 Nov; 5(17):4472-82. PubMed ID: 16220534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]