These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
614 related articles for article (PubMed ID: 18491396)
1. Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. He W; Ma Z; Teo WE; Dong YX; Robless PA; Lim TC; Ramakrishna S J Biomed Mater Res A; 2009 Jul; 90(1):205-16. PubMed ID: 18491396 [TBL] [Abstract][Full Text] [Related]
2. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. He W; Yong T; Ma ZW; Inai R; Teo WE; Ramakrishna S Tissue Eng; 2006 Sep; 12(9):2457-66. PubMed ID: 16995779 [TBL] [Abstract][Full Text] [Related]
4. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques. Roh JD; Brennan MP; Lopez-Soler RI; Fong PM; Goyal A; Dardik A; Breuer CK J Pediatr Surg; 2007 Jan; 42(1):198-202. PubMed ID: 17208565 [TBL] [Abstract][Full Text] [Related]
5. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581 [TBL] [Abstract][Full Text] [Related]
6. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts. Park IS; Kim SH; Kim YH; Kim IH; Kim SH J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Zhou M; Liu Z; Wei Z; Liu C; Qiao T; Ran F; Bai Y; Jiang X; Ding Y Artif Organs; 2009 Mar; 33(3):230-9. PubMed ID: 19245522 [TBL] [Abstract][Full Text] [Related]
8. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. Zhu C; Fan D; Duan Z; Xue W; Shang L; Chen F; Luo Y J Biomed Mater Res A; 2009 Jun; 89(3):829-40. PubMed ID: 19165794 [TBL] [Abstract][Full Text] [Related]
9. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Yang D; Guo T; Nie C; Morris SF Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529 [TBL] [Abstract][Full Text] [Related]
10. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size. Mathews A; Colombus S; Krishnan VK; Krishnan LK J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434 [TBL] [Abstract][Full Text] [Related]
11. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds. Inanç B; Arslan YE; Seker S; Elçin AE; Elçin YM J Biomed Mater Res A; 2009 Jul; 90(1):186-95. PubMed ID: 18491392 [TBL] [Abstract][Full Text] [Related]
12. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. Mirensky TL; Nelson GN; Brennan MP; Roh JD; Hibino N; Yi T; Shinoka T; Breuer CK J Pediatr Surg; 2009 Jun; 44(6):1127-32; discussion 1132-3. PubMed ID: 19524728 [TBL] [Abstract][Full Text] [Related]
13. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539 [TBL] [Abstract][Full Text] [Related]
14. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Wu HC; Wang TW; Kang PL; Tsuang YH; Sun JS; Lin FH Biomaterials; 2007 Mar; 28(7):1385-92. PubMed ID: 17141865 [TBL] [Abstract][Full Text] [Related]
15. Factorial design optimization and in vivo feasibility of poly(epsilon-caprolactone)-micro- and nanofiber-based small diameter vascular grafts. Nottelet B; Pektok E; Mandracchia D; Tille JC; Walpoth B; Gurny R; Möller M J Biomed Mater Res A; 2009 Jun; 89(4):865-75. PubMed ID: 18465817 [TBL] [Abstract][Full Text] [Related]
16. Reendothelialization of tubular scaffolds by sedimentary and rotative forces: a first step toward tissue-engineered venous graft. Wu YF; Zhang J; Gu YQ; Li JX; Wang LC; Wang ZG Cardiovasc Revasc Med; 2008; 9(4):238-47. PubMed ID: 18928949 [TBL] [Abstract][Full Text] [Related]
17. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
18. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
19. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells. Grenier S; Sandig M; Mequanint K J Biomed Mater Res A; 2007 Sep; 82(4):802-9. PubMed ID: 17326143 [TBL] [Abstract][Full Text] [Related]
20. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Zhang J; Qi H; Wang H; Hu P; Ou L; Guo S; Li J; Che Y; Yu Y; Kong D Artif Organs; 2006 Dec; 30(12):898-905. PubMed ID: 17181830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]