These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18491695)

  • 21. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local haemodynamics and shear stress in cuffed and straight PTFE-venous anastomoses: an in-vitro comparison using particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Pfitzmann R; Scholz H; Neuhaus P; Settmacher U
    Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):367-73. PubMed ID: 14511997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle hemodynamics analysis of Miller cuff arterial anastomosis.
    Longest PW; Kleinstreuer C; Archie JP
    J Vasc Surg; 2003 Dec; 38(6):1353-62. PubMed ID: 14681641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemodynamic parameters and early intimal thickening in branching blood vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Rückert R; Rösler S; Neuhaus P; Settmacher U
    J Biomech; 2004 Jul; 37(7):1043-51. PubMed ID: 15165874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of anastomosis angle on the localization of disturbed flow in 'side-to-end' fistulae for haemodialysis access.
    Ene-Iordache B; Cattaneo L; Dubini G; Remuzzi A
    Nephrol Dial Transplant; 2013 Apr; 28(4):997-1005. PubMed ID: 22785110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alteration of mean wall shear stress near an oscillating stagnation point.
    Hazel AL; Pedley TJ
    J Biomech Eng; 1998 Apr; 120(2):227-37. PubMed ID: 10412384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model.
    Ojha M; Ethier CR; Johnston KW; Cobbold RS
    J Vasc Surg; 1990 Dec; 12(6):747-53. PubMed ID: 2243410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae.
    Jia L; Wang L; Wei F; Yu H; Dong H; Wang B; Lu Z; Sun G; Chen H; Meng J; Li B; Zhang R; Bi X; Wang Z; Pang H; Jiang A
    Nephrology (Carlton); 2015 May; 20(5):335-42. PubMed ID: 25581663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow dynamic effect of the anastomotic angle: a numerical study of pulsatile flow in vascular graft anastomoses models.
    Perktold K; Tatzl H; Rappitsch G
    Technol Health Care; 1994 Jan; 1(3):197-207. PubMed ID: 25273367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anastomotic intimal hyperplasia: mechanical injury or flow induced.
    Bassiouny HS; White S; Glagov S; Choi E; Giddens DP; Zarins CK
    J Vasc Surg; 1992 Apr; 15(4):708-16; discussion 716-7. PubMed ID: 1560562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical study of the influence of anastomotic configuration on hemodynamics in miller cuff models.
    Xiong FL; Chong CK
    Ann Biomed Eng; 2009 Feb; 37(2):301-14. PubMed ID: 19082894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model.
    Zhang JM; Chua LP; Ghista DN; Yu SC; Tan YS
    Med Biol Eng Comput; 2008 Jul; 46(7):689-99. PubMed ID: 18301936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.
    Fei DY; Thomas JD; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):331-6. PubMed ID: 7799636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data.
    Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H
    J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.