These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 18491698)
1. Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements. Figueiredo-Pina CG; Yan Y; Neville A; Fisher J Proc Inst Mech Eng H; 2008 Apr; 222(3):285-96. PubMed ID: 18491698 [TBL] [Abstract][Full Text] [Related]
2. Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Clarke IC; Good V; Williams P; Schroeder D; Anissian L; Stark A; Oonishi H; Schuldies J; Gustafson G Proc Inst Mech Eng H; 2000; 214(4):331-47. PubMed ID: 10997055 [TBL] [Abstract][Full Text] [Related]
3. Alternative materials to improve total hip replacement tribology. Santavirta S; Böhler M; Harris WH; Konttinen YT; Lappalainen R; Muratoglu O; Rieker C; Salzer M Acta Orthop Scand; 2003 Aug; 74(4):380-8. PubMed ID: 14521286 [TBL] [Abstract][Full Text] [Related]
4. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head. Scholes SC; Inman IA; Unsworth A; Jones E Proc Inst Mech Eng H; 2008 Apr; 222(3):273-83. PubMed ID: 18491697 [TBL] [Abstract][Full Text] [Related]
5. Wear and surface analysis of 38 mm ceramic-on-metal total hip replacements under standard and severe wear testing conditions. Williams SR; Wu JJ; Unsworth A; Khan I Proc Inst Mech Eng H; 2011 Aug; 225(8):783-96. PubMed ID: 21922955 [TBL] [Abstract][Full Text] [Related]
6. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators. Yan Y; Dowson D; Neville A J Mech Behav Biomed Mater; 2013 Feb; 18():191-9. PubMed ID: 23182693 [TBL] [Abstract][Full Text] [Related]
7. Wear of novel ceramic-on-ceramic bearings under adverse and clinically relevant hip simulator conditions. Al-Hajjar M; Jennings LM; Begand S; Oberbach T; Delfosse D; Fisher J J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1456-62. PubMed ID: 23744622 [TBL] [Abstract][Full Text] [Related]
8. An in vitro study of the reduction in wear of metal-on-metal hip prostheses using surface-engineered femoral heads. Fisher J; Hu XQ; Tipper JL; Stewart TD; Williams S; Stone MH; Davies C; Hatto P; Bolton J; Riley M; Hardaker C; Isaac GH; Berry G; Ingham E Proc Inst Mech Eng H; 2002; 216(4):219-30. PubMed ID: 12206518 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear. Davidson JA Clin Orthop Relat Res; 1993 Sep; (294):361-78. PubMed ID: 8358943 [TBL] [Abstract][Full Text] [Related]
10. Release of metal ions from nano CoCrMo wear debris generated from tribo-corrosion processes in artificial hip implants. Wang Y; Yan Y; Su Y; Qiao L J Mech Behav Biomed Mater; 2017 Apr; 68():124-133. PubMed ID: 28161662 [TBL] [Abstract][Full Text] [Related]
11. Surface engineering: a low wearing solution for metal-on-metal hip surface replacements. Leslie IJ; Williams S; Brown C; Anderson J; Isaac G; Hatto P; Ingham E; Fisher J J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):558-65. PubMed ID: 19195030 [TBL] [Abstract][Full Text] [Related]
12. Analysis and modelling of wear of cobalt-chrome alloys in a pin-on-plate test for a metal-on-metal total hip replacement. Jin ZM; Firkins P; Farrar R; Fisher J Proc Inst Mech Eng H; 2000; 214(6):559-68. PubMed ID: 11201403 [TBL] [Abstract][Full Text] [Related]
13. Ceramic materials as bearing surfaces for total hip arthroplasty. D'Antonio JA; Sutton K J Am Acad Orthop Surg; 2009 Feb; 17(2):63-8. PubMed ID: 19202119 [TBL] [Abstract][Full Text] [Related]
14. Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: comparison between alumina and cobalt-chrome heads. Chang CB; Yoo JJ; Song WS; Kim DJ; Koo KH; Kim HJ J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):204-9. PubMed ID: 17854069 [TBL] [Abstract][Full Text] [Related]
15. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Goldsmith AA; Dowson D; Isaac GH; Lancaster JG Proc Inst Mech Eng H; 2000; 214(1):39-47. PubMed ID: 10718049 [TBL] [Abstract][Full Text] [Related]
16. Tribological performance of various CoCr microstructures in metal-on-metal bearings: the development of a more physiological protocol in vitro. Kamali A; Hussain A; Li C; Pamu J; Daniel J; Ziaee H; Daniel J; McMinn DJ J Bone Joint Surg Br; 2010 May; 92(5):717-25. PubMed ID: 20436012 [TBL] [Abstract][Full Text] [Related]
17. Systemic toxicity related to metal hip prostheses. Bradberry SM; Wilkinson JM; Ferner RE Clin Toxicol (Phila); 2014; 52(8):837-47. PubMed ID: 25132471 [TBL] [Abstract][Full Text] [Related]
18. Experiences with metal on metal components in THR. Boehler N Acta Orthop Belg; 1997; 63 Suppl 1():96-7. PubMed ID: 9532860 [TBL] [Abstract][Full Text] [Related]
19. The counterface, surface smoothness, tolerances, and coatings in total joint prostheses. Santavirta SS; Lappalainen R; Pekko P; Anttila A; Konttinen YT Clin Orthop Relat Res; 1999 Dec; (369):92-102. PubMed ID: 10611864 [TBL] [Abstract][Full Text] [Related]
20. Alternative bearing surfaces for total joint arthroplasty. Jazrawi LM; Kummer FJ; DiCesare PE J Am Acad Orthop Surg; 1998; 6(4):198-203. PubMed ID: 9682082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]