BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18491888)

  • 1. Core trees and consensus fragment sequences for molecular representation and similarity analysis.
    Lounkine E; Bajorath J
    J Chem Inf Model; 2008 Jun; 48(6):1161-6. PubMed ID: 18491888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs.
    Krier M; Hutter MC
    J Chem Inf Model; 2009 May; 49(5):1280-97. PubMed ID: 19402687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations.
    Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(1):59-68. PubMed ID: 17238249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 2D fingerprint methods for multiple-template similarity searching on compound activity classes of increasing structural diversity.
    Tovar A; Eckert H; Bajorath J
    ChemMedChem; 2007 Feb; 2(2):208-17. PubMed ID: 17143917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1151-7. PubMed ID: 12870906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragment formal concept analysis accurately classifies compounds with closely related biological activities.
    Krüger F; Lounkine E; Bajorath J
    ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RelACCS-FP: a structural minimalist approach to fingerprint design.
    Hu Y; Lounkine E; Batista J; Bajorath J
    Chem Biol Drug Des; 2008 Nov; 72(5):341-9. PubMed ID: 19012570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of activity-specific fragment pathways isolated from random fragment populations reveals the formation of coherent molecular cores.
    Lounkine E; Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(6):2133-9. PubMed ID: 17939652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substructure mining using elaborate chemical representation.
    Kazius J; Nijssen S; Kok J; Bäck T; Ijzerman AP
    J Chem Inf Model; 2006; 46(2):597-605. PubMed ID: 16562988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging chemical patterns: a new methodology for molecular classification and compound selection.
    Auer J; Bajorath J
    J Chem Inf Model; 2006; 46(6):2502-14. PubMed ID: 17125191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    Org Biomol Chem; 2004 Nov; 2(22):3256-66. PubMed ID: 15534703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination and mapping of activity-specific descriptor value ranges for the identification of active compounds.
    Eckert H; Bajorath J
    J Med Chem; 2006 Apr; 49(7):2284-93. PubMed ID: 16570925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A scoring scheme for discriminating between drugs and nondrugs.
    Sadowski J; Kubinyi H
    J Med Chem; 1998 Aug; 41(18):3325-9. PubMed ID: 9719584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity search profiles as a diagnostic tool for the analysis of virtual screening calculations.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2004; 44(4):1275-81. PubMed ID: 15272835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.
    Kawai K; Fujishima S; Takahashi Y
    J Chem Inf Model; 2008 Jun; 48(6):1152-60. PubMed ID: 18533712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of a novel class-directed 2D fingerprint to search for structurally diverse active compounds.
    Eckert H; Bajorath J
    J Chem Inf Model; 2006; 46(6):2515-26. PubMed ID: 17125192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico screening of drug databases for TSE inhibitors.
    Lorenzen S; Dunkel M; Preissner R
    Biosystems; 2005 May; 80(2):117-22. PubMed ID: 15823410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.
    Vogt M; Bajorath J
    Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Bayes affinity fingerprints" improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
    Bender A; Jenkins JL; Glick M; Deng Z; Nettles JH; Davies JW
    J Chem Inf Model; 2006; 46(6):2445-56. PubMed ID: 17125186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.