These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18492664)

  • 1. Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90.
    Cunningham CN; Krukenberg KA; Agard DA
    J Biol Chem; 2008 Jul; 283(30):21170-8. PubMed ID: 18492664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
    Siligardi G; Hu B; Panaretou B; Piper PW; Pearl LH; Prodromou C
    J Biol Chem; 2004 Dec; 279(50):51989-98. PubMed ID: 15466438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic inhibition of the Hsp90 ATPase activity.
    Richter K; Moser S; Hagn F; Friedrich R; Hainzl O; Heller M; Schlee S; Kessler H; Reinstein J; Buchner J
    J Biol Chem; 2006 Apr; 281(16):11301-11. PubMed ID: 16461354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated ATP hydrolysis by the Hsp90 dimer.
    Richter K; Muschler P; Hainzl O; Buchner J
    J Biol Chem; 2001 Sep; 276(36):33689-96. PubMed ID: 11441008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.
    Cunningham CN; Southworth DR; Krukenberg KA; Agard DA
    Protein Sci; 2012 Aug; 21(8):1162-71. PubMed ID: 22653663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
    Harris SF; Shiau AK; Agard DA
    Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90.
    Wegele H; Muschler P; Bunck M; Reinstein J; Buchner J
    J Biol Chem; 2003 Oct; 278(41):39303-10. PubMed ID: 12890674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.
    Obermann WM; Sondermann H; Russo AA; Pavletich NP; Hartl FU
    J Cell Biol; 1998 Nov; 143(4):901-10. PubMed ID: 9817749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions.
    Meyer P; Prodromou C; Hu B; Vaughan C; Roe SM; Panaretou B; Piper PW; Pearl LH
    Mol Cell; 2003 Mar; 11(3):647-58. PubMed ID: 12667448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved conformational changes in the ATPase cycle of human Hsp90.
    Richter K; Soroka J; Skalniak L; Leskovar A; Hessling M; Reinstein J; Buchner J
    J Biol Chem; 2008 Jun; 283(26):17757-65. PubMed ID: 18400751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains.
    Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH
    EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center.
    Brino L; Urzhumtsev A; Mousli M; Bronner C; Mitschler A; Oudet P; Moras D
    J Biol Chem; 2000 Mar; 275(13):9468-75. PubMed ID: 10734094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers.
    Wayne N; Bolon DN
    J Biol Chem; 2007 Nov; 282(48):35386-95. PubMed ID: 17908693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s.
    Vaughan CK; Piper PW; Pearl LH; Prodromou C
    FEBS J; 2009 Jan; 276(1):199-209. PubMed ID: 19032597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity.
    Jin Y; Hoxie RS; Street TO
    Protein Sci; 2017 Jun; 26(6):1206-1213. PubMed ID: 28383119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform.
    McLaughlin SH; Ventouras LA; Lobbezoo B; Jackson SE
    J Mol Biol; 2004 Nov; 344(3):813-26. PubMed ID: 15533447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide-dependent interaction of Saccharomyces cerevisiae Hsp90 with the cochaperone proteins Sti1, Cpr6, and Sba1.
    Johnson JL; Halas A; Flom G
    Mol Cell Biol; 2007 Jan; 27(2):768-76. PubMed ID: 17101799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.