These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 18492665)
1. Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase. Qi J; Forgac M J Biol Chem; 2008 Jul; 283(28):19274-82. PubMed ID: 18492665 [TBL] [Abstract][Full Text] [Related]
2. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. Jefferies KC; Forgac M J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183 [TBL] [Abstract][Full Text] [Related]
3. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965 [TBL] [Abstract][Full Text] [Related]
4. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. Inoue T; Forgac M J Biol Chem; 2005 Jul; 280(30):27896-903. PubMed ID: 15951435 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of the N-terminal domain of subunit a of the yeast vacuolar ATPase (V-ATPase) using accessibility of single cysteine substitutions to chemical modification. Liberman R; Cotter K; Baleja JD; Forgac M J Biol Chem; 2013 Aug; 288(31):22798-808. PubMed ID: 23740254 [TBL] [Abstract][Full Text] [Related]
6. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function. Lu M; Vergara S; Zhang L; Holliday LS; Aris J; Gluck SL J Biol Chem; 2002 Oct; 277(41):38409-15. PubMed ID: 12163484 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional separation of the N- and C-terminal domains of the yeast V-ATPase subunit H. Liu M; Tarsio M; Charsky CM; Kane PM J Biol Chem; 2005 Nov; 280(44):36978-85. PubMed ID: 16141210 [TBL] [Abstract][Full Text] [Related]
8. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. Owegi MA; Pappas DL; Finch MW; Bilbo SA; Resendiz CA; Jacquemin LJ; Warrier A; Trombley JD; McCulloch KM; Margalef KL; Mertz MJ; Storms JM; Damin CA; Parra KJ J Biol Chem; 2006 Oct; 281(40):30001-14. PubMed ID: 16891312 [TBL] [Abstract][Full Text] [Related]
9. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Jones RP; Durose LJ; Findlay JB; Harrison MA Biochemistry; 2005 Mar; 44(10):3933-41. PubMed ID: 15751969 [TBL] [Abstract][Full Text] [Related]
10. Subunit interactions and requirements for inhibition of the yeast V1-ATPase. Diab H; Ohira M; Liu M; Cobb E; Kane PM J Biol Chem; 2009 May; 284(20):13316-13325. PubMed ID: 19299516 [TBL] [Abstract][Full Text] [Related]
11. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Zhao J; Benlekbir S; Rubinstein JL Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514 [TBL] [Abstract][Full Text] [Related]
12. Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Arata Y; Baleja JD; Forgac M Biochemistry; 2002 Sep; 41(37):11301-7. PubMed ID: 12220197 [TBL] [Abstract][Full Text] [Related]
13. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae. Basak S; Lim J; Manimekalai MS; Balakrishna AM; GrĂ¼ber G J Biol Chem; 2013 Apr; 288(17):11930-9. PubMed ID: 23476018 [TBL] [Abstract][Full Text] [Related]
14. Proton translocation driven by ATP hydrolysis in V-ATPases. Kawasaki-Nishi S; Nishi T; Forgac M FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495 [TBL] [Abstract][Full Text] [Related]
15. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays. Parsons LS; Wilkens S PLoS One; 2012; 7(10):e46960. PubMed ID: 23071676 [TBL] [Abstract][Full Text] [Related]
16. Evidence that the NH2 terminus of vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector. Landolt-Marticorena C; Williams KM; Correa J; Chen W; Manolson MF J Biol Chem; 2000 May; 275(20):15449-57. PubMed ID: 10747882 [TBL] [Abstract][Full Text] [Related]
17. Evidence that there are two copies of subunit c" in V0 complexes in the vacuolar H+-ATPase. Gibson LC; Cadwallader G; Finbow ME Biochem J; 2002 Sep; 366(Pt 3):911-9. PubMed ID: 12038966 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase. Flannery AR; Stevens TH J Biol Chem; 2008 Oct; 283(43):29099-108. PubMed ID: 18708638 [TBL] [Abstract][Full Text] [Related]
19. Structure of the yeast vacuolar ATPase. Zhang Z; Zheng Y; Mazon H; Milgrom E; Kitagawa N; Kish-Trier E; Heck AJ; Kane PM; Wilkens S J Biol Chem; 2008 Dec; 283(51):35983-95. PubMed ID: 18955482 [TBL] [Abstract][Full Text] [Related]
20. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p). Chan CY; Prudom C; Raines SM; Charkhzarrin S; Melman SD; De Haro LP; Allen C; Lee SA; Sklar LA; Parra KJ J Biol Chem; 2012 Mar; 287(13):10236-10250. PubMed ID: 22215674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]