BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 18492667)

  • 1. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus.
    Nakano M; Imamura H; Toei M; Tamakoshi M; Yoshida M; Yokoyama K
    J Biol Chem; 2008 Jul; 283(30):20789-96. PubMed ID: 18492667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP.
    Yokoyama K; Muneyuki E; Amano T; Mizutani S; Yoshida M; Ishida M; Ohkuma S
    J Biol Chem; 1998 Aug; 273(32):20504-10. PubMed ID: 9685406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase.
    Feniouk BA; Suzuki T; Yoshida M
    J Biol Chem; 2007 Jan; 282(1):764-72. PubMed ID: 17092944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The F subunit of Thermus thermophilus V1-ATPase promotes ATPase activity but is not necessary for rotation.
    Imamura H; Ikeda C; Yoshida M; Yokoyama K
    J Biol Chem; 2004 Apr; 279(17):18085-90. PubMed ID: 14963028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-dependent transformation of F0.F1-ATPase in Paracoccus denitrificans plasma membranes.
    Zharova TV; Vinogradov AD
    J Biol Chem; 2004 Mar; 279(13):12319-24. PubMed ID: 14722115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule analysis of inhibitory pausing states of V1-ATPase.
    Uner NE; Nishikawa Y; Okuno D; Nakano M; Yokoyama K; Noji H
    J Biol Chem; 2012 Aug; 287(34):28327-35. PubMed ID: 22736762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2000 Jul; 1459(1):202-17. PubMed ID: 10924912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism.
    Watanabe S; Ikebe R; Ikebe M
    J Biol Chem; 2006 Mar; 281(11):7151-60. PubMed ID: 16415346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and conformational plasticity of the intact
    Zhou L; Sazanov LA
    Science; 2019 Aug; 365(6455):. PubMed ID: 31439765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical modulation of ATP-binding affinity of V1-ATPase.
    Tirtom NE; Okuno D; Nakano M; Yokoyama K; Noji H
    J Biol Chem; 2013 Jan; 288(1):619-23. PubMed ID: 23155048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 3 × 120° rotary mechanism of
    Zarco-Zavala M; Watanabe R; McMillan DGG; Suzuki T; Ueno H; Mendoza-Hoffmann F; García-Trejo JJ; Noji H
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29647-29657. PubMed ID: 33168750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase.
    Kishikawa J; Nakanishi A; Furuike S; Tamakoshi M; Yokoyama K
    J Biol Chem; 2014 Jan; 289(1):403-12. PubMed ID: 24247239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.
    Schep DG; Zhao J; Rubinstein JL
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3245-50. PubMed ID: 26951669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidrug resistance protein 4 (ABCC4)-mediated ATP hydrolysis: effect of transport substrates and characterization of the post-hydrolysis transition state.
    Sauna ZE; Nandigama K; Ambudkar SV
    J Biol Chem; 2004 Nov; 279(47):48855-64. PubMed ID: 15364914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin X is a high duty ratio motor.
    Homma K; Ikebe M
    J Biol Chem; 2005 Aug; 280(32):29381-91. PubMed ID: 15961399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis.
    Groth G; Junge W
    Biochemistry; 1993 Aug; 32(32):8103-11. PubMed ID: 8394125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
    Minagawa Y; Ueno H; Hara M; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R
    J Biol Chem; 2013 Nov; 288(45):32700-32707. PubMed ID: 24089518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding mechanism of the yeast F1-ATPase inhibitory peptide: role of catalytic intermediates and enzyme turnover.
    Corvest V; Sigalat C; Venard R; Falson P; Mueller DM; Haraux F
    J Biol Chem; 2005 Mar; 280(11):9927-36. PubMed ID: 15640141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.
    Devi SK; Chichili VP; Jeyakanthan J; Velmurugan D; Sivaraman J
    J Struct Biol; 2015 Jun; 190(3):367-72. PubMed ID: 25916755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4.
    Wong I; Lohman TM
    Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.