These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 18492686)
1. Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments. Shinoda K; Tomita M; Ishihama Y Bioinformatics; 2008 Jul; 24(14):1590-5. PubMed ID: 18492686 [TBL] [Abstract][Full Text] [Related]
2. MassUntangler: a novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data. Ballardini R; Benevento M; Arrigoni G; Pattini L; Roda A J Chromatogr A; 2011 Dec; 1218(49):8859-68. PubMed ID: 21783198 [TBL] [Abstract][Full Text] [Related]
3. Retention time alignment algorithms for LC/MS data must consider non-linear shifts. Podwojski K; Fritsch A; Chamrad DC; Paul W; Sitek B; Stühler K; Mutzel P; Stephan C; Meyer HE; Urfer W; Ickstadt K; Rahnenführer J Bioinformatics; 2009 Mar; 25(6):758-64. PubMed ID: 19176558 [TBL] [Abstract][Full Text] [Related]
4. Informatics for peptide retention properties in proteomic LC-MS. Shinoda K; Sugimoto M; Tomita M; Ishihama Y Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845 [TBL] [Abstract][Full Text] [Related]
5. Time alignment algorithms based on selected mass traces for complex LC-MS data. Christin C; Hoefsloot HC; Smilde AK; Suits F; Bischoff R; Horvatovich PL J Proteome Res; 2010 Mar; 9(3):1483-95. PubMed ID: 20070124 [TBL] [Abstract][Full Text] [Related]
6. Reproducibility of LC-MS-based protein identification. Berg M; Parbel A; Pettersen H; Fenyö D; Björkesten L J Exp Bot; 2006; 57(7):1509-14. PubMed ID: 16551682 [TBL] [Abstract][Full Text] [Related]
7. A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Lange E; Gröpl C; Schulz-Trieglaff O; Leinenbach A; Huber C; Reinert K Bioinformatics; 2007 Jul; 23(13):i273-81. PubMed ID: 17646306 [TBL] [Abstract][Full Text] [Related]
8. MSSimulator: Simulation of mass spectrometry data. Bielow C; Aiche S; Andreotti S; Reinert K J Proteome Res; 2011 Jul; 10(7):2922-9. PubMed ID: 21526843 [TBL] [Abstract][Full Text] [Related]
9. [Application of peptide retention time in proteome research]. Shao C; Gao Y Se Pu; 2010 Feb; 28(2):128-34. PubMed ID: 20556949 [TBL] [Abstract][Full Text] [Related]
10. Information-dependent LC-MS/MS acquisition with exclusion lists potentially generated on-the-fly: case study using a whole cell digest of Clostridium thermocellum. McQueen P; Spicer V; Rydzak T; Sparling R; Levin D; Wilkins JA; Krokhin O Proteomics; 2012 Apr; 12(8):1160-9. PubMed ID: 22577018 [TBL] [Abstract][Full Text] [Related]
11. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405 [TBL] [Abstract][Full Text] [Related]
12. Absolute protein quantification by LC/MS(E) for global analysis of salicylic acid-induced plant protein secretion responses. Cheng FY; Blackburn K; Lin YM; Goshe MB; Williamson JD J Proteome Res; 2009 Jan; 8(1):82-93. PubMed ID: 18998720 [TBL] [Abstract][Full Text] [Related]
13. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis. Wang N; Li L Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145 [TBL] [Abstract][Full Text] [Related]
14. Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks. Shinoda K; Sugimoto M; Yachie N; Sugiyama N; Masuda T; Robert M; Soga T; Tomita M J Proteome Res; 2006 Dec; 5(12):3312-7. PubMed ID: 17137332 [TBL] [Abstract][Full Text] [Related]
15. Differential recovery of peptides from sample tubes and the reproducibility of quantitative proteomic data. Bark SJ; Hook V J Proteome Res; 2007 Nov; 6(11):4511-6. PubMed ID: 17850064 [TBL] [Abstract][Full Text] [Related]
16. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
17. Enhanced characterization of complex proteomic samples using LC-MALDI MS/MS: exclusion of redundant peptides from MS/MS analysis in replicate runs. Chen HS; Rejtar T; Andreev V; Moskovets E; Karger BL Anal Chem; 2005 Dec; 77(23):7816-25. PubMed ID: 16316193 [TBL] [Abstract][Full Text] [Related]
18. LC-MS solvent composition monitoring and chromatography alignment using mobile phase tracer molecules. Chen SS; Aebersold R J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Dec; 829(1-2):107-14. PubMed ID: 16242386 [TBL] [Abstract][Full Text] [Related]
19. Protein identification assisted by the prediction of retention time in liquid chromatography/tandem mass spectrometry. Wang Y; Zhang J; Gu X; Zhang XM J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):122-8. PubMed ID: 16159714 [TBL] [Abstract][Full Text] [Related]
20. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Baczek T; Kaliszan R Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]