These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18493079)

  • 21. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.).
    Raman H; Zhang K; Cakir M; Appels R; Garvin DF; Maron LG; Kochian LV; Moroni JS; Raman R; Imtiaz M; Drake-Brockman F; Waters I; Martin P; Sasaki T; Yamamoto Y; Matsumoto H; Hebb DM; Delhaize E; Ryan PR
    Genome; 2005 Oct; 48(5):781-91. PubMed ID: 16391684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Malate production, sugar metabolism, and redox homeostasis in the leaf growth zone of Rye (Secale cereale) increase stress tolerance to aluminum stress: A biochemical and genome-wide transcriptional study.
    Donnelly CP; De Sousa A; Cuypers B; Laukens K; Al-Huqail AA; Asard H; Beemster GTS; AbdElgawad H
    J Hazard Mater; 2024 Feb; 464():132956. PubMed ID: 37976853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response.
    Li Y; Haseneyer G; Schön CC; Ankerst D; Korzun V; Wilde P; Bauer E
    BMC Plant Biol; 2011 Jan; 11():6. PubMed ID: 21219606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.).
    Francki MG
    Genome; 2001 Apr; 44(2):266-74. PubMed ID: 11341737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a whole-genome sequence for rye (Secale cereale L.).
    Bauer E; Schmutzer T; Barilar I; Mascher M; Gundlach H; Martis MM; Twardziok SO; Hackauf B; Gordillo A; Wilde P; Schmidt M; Korzun V; Mayer KF; Schmid K; Schön CC; Scholz U
    Plant J; 2017 Mar; 89(5):853-869. PubMed ID: 27888547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics.
    Hackauf B; Wehling P
    Theor Appl Genet; 2005 Mar; 110(5):832-45. PubMed ID: 15717193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies.
    Jung WJ; Seo YW
    Gene; 2019 Feb; 684():82-94. PubMed ID: 30359739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective sweeps identification in distinct groups of cultivated rye (Secale cereale L.) germplasm provides potential candidate genes for crop improvement.
    Hawliczek A; Borzęcka E; Tofil K; Alachiotis N; Bolibok L; Gawroński P; Siekmann D; Hackauf B; Dušinský R; Švec M; Bolibok-Brągoszewska H
    BMC Plant Biol; 2023 Jun; 23(1):323. PubMed ID: 37328739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative analysis of a recombining-repeat-sequence family in the mitochondrial genomes of wheat (Triticum aestivum L.) and rye (Secale cereale L.).
    Coulthart MB; Spencer DF; Gray MW
    Curr Genet; 1993 Mar; 23(3):255-64. PubMed ID: 8435855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale L.).
    Qiu L; Tang ZX; Li M; Fu SL
    Genome; 2016 Mar; 59(3):159-65. PubMed ID: 26862664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1).
    Yamaguchi M; Sasaki T; Sivaguru M; Yamamoto Y; Osawa H; Ahn SJ; Matsumoto H
    Plant Cell Physiol; 2005 May; 46(5):812-6. PubMed ID: 15769806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.
    Sasaki T; Tsuchiya Y; Ariyoshi M; Ryan PR; Furuichi T; Yamamoto Y
    Plant Cell Physiol; 2014 Dec; 55(12):2126-38. PubMed ID: 25311199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.).
    Han G; Liu S; Jin Y; Jia M; Ma P; Liu H; Wang J; An D
    BMC Genomics; 2020 Mar; 21(1):206. PubMed ID: 32131733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering high-level aluminum tolerance in barley with the ALMT1 gene.
    Delhaize E; Ryan PR; Hebb DM; Yamamoto Y; Sasaki T; Matsumoto H
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15249-54. PubMed ID: 15471989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repression of Mitochondrial Citrate Synthase Genes by Aluminum Stress in Roots of
    Abd El-Moneim D; Contreras R; Silva-Navas J; Gallego FJ; Figueiras AM; Benito C
    Front Plant Sci; 2022; 13():832981. PubMed ID: 35463451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB.
    Caniato FF; Hamblin MT; Guimaraes CT; Zhang Z; Schaffert RE; Kochian LV; Magalhaes JV
    PLoS One; 2014; 9(1):e87438. PubMed ID: 24498106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of a novel powdery mildew (Blumeria graminis) resistance locus in rye (Secale cereale L.).
    Vendelbo NM; Mahmood K; Sarup P; Kristensen PS; Orabi J; Jahoor A
    Sci Rep; 2021 Nov; 11(1):23057. PubMed ID: 34845285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China.
    Han C; Dai SF; Liu DC; Pu ZJ; Wei YM; Zheng YL; Wen DJ; Zhao L; Yan ZH
    Genet Mol Res; 2013 Nov; 12(4):5602-16. PubMed ID: 24301929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alleles of organic acid transporter genes are highly correlated with wheat resistance to acidic soil in field conditions.
    Aguilera JG; Minozzo JAD; Barichello D; Fogaça CM; da Silva JP; Consoli L; Pereira JF
    Theor Appl Genet; 2016 Jul; 129(7):1317-1331. PubMed ID: 27008477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.