These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18493291)

  • 1. Modal frequency degeneracy in thermally loaded optical resonators.
    Bullington AL; Lantz BT; Fejer MM; Byer RL
    Appl Opt; 2008 May; 47(15):2840-51. PubMed ID: 18493291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing optical loss from modal frequency degeneracy in a long optical cavity.
    Fang Q; Blair CD; Zhao C; Blair DG
    Opt Express; 2021 Jul; 29(15):23902-23915. PubMed ID: 34614646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of light noise sources in a recycled Michelson interferometer with Fabry-Perot arms.
    Camp JB; Yamamoto H; Whitcomb SE; McClelland DE
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):120-8. PubMed ID: 10641846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection.
    Petrov N; Pustovoit V
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Readout and control of a power-recycled interferometric gravitational-wave antenna.
    Fritschel P; Bork R; González G; Mavalvala N; Ouimette D; Rong H; Sigg D; Zucker M
    Appl Opt; 2001 Oct; 40(28):4988-98. PubMed ID: 18364777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-order Laguerre-Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors.
    Noack A; Bogan C; Willke B
    Opt Lett; 2017 Feb; 42(4):751-754. PubMed ID: 28198863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.
    Dooley KL; Arain MA; Feldbaum D; Frolov VV; Heintze M; Hoak D; Khazanov EA; Lucianetti A; Martin RM; Mueller G; Palashov O; Quetschke V; Reitze DH; Savage RL; Tanner DB; Williams LF; Wu W
    Rev Sci Instrum; 2012 Mar; 83(3):033109. PubMed ID: 22462908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case.
    Dooley KL; Barsotti L; Adhikari RX; Evans M; Fricke TT; Fritschel P; Frolov V; Kawabe K; Smith-Lefebvre N
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2618-26. PubMed ID: 24323024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical design of the proposed Australian International Gravitational Observatory.
    Barriga P; Arain MA; Mueller G; Zhao C; Blair DG
    Opt Express; 2009 Feb; 17(4):2149-65. PubMed ID: 19219119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High bandwidth frequency lock of a rigid tunable optical cavity.
    Millo J; Merzougui M; Di Pace S; Chaibi W
    Appl Opt; 2014 Nov; 53(32):7761-72. PubMed ID: 25403002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lock acquisition of a gravitational-wave interferometer.
    Evans M; Mavalvala N; Fritschel P; Bork R; Bhawal B; Gustafson R; Kells W; Landry M; Sigg D; Weiss R; Whitcomb S; Yamamoto H
    Opt Lett; 2002 Apr; 27(8):598-600. PubMed ID: 18007874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modal instability suppression in a high-average-power and high-finesse Fabry-Perot cavity.
    Amoudry L; Wang H; Cassou K; Chiche R; Dupraz K; Martens A; Nutarelli D; Soskov V; Zomer F
    Appl Opt; 2020 Jan; 59(1):116-121. PubMed ID: 32225276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector.
    Uchiyama T; Miyoki S; Telada S; Yamamoto K; Ohashi M; Agatsuma K; Arai K; Fujimoto MK; Haruyama T; Kawamura S; Miyakawa O; Ohishi N; Saito T; Shintomi T; Suzuki T; Takahashi R; Tatsumi D
    Phys Rev Lett; 2012 Apr; 108(14):141101. PubMed ID: 22540781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.
    Britzger M; Wimmer MH; Khalaidovski A; Friedrich D; Kroker S; Brückner F; Kley EB; Tünnermann A; Danzmann K; Schnabel R
    Opt Express; 2012 Nov; 20(23):25400-8. PubMed ID: 23187357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection.
    Müller G; Delker T; Tanner DB; Reitze D
    Appl Opt; 2003 Mar; 42(7):1257-68. PubMed ID: 12638883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffractively coupled Fabry-Perot resonator with power-recycling.
    Britzger M; Friedrich D; Kroker S; Brückner F; Burmeister O; Kley EB; Tünnermann A; Danzmann K; Schnabel R
    Opt Express; 2011 Aug; 19(16):14964-75. PubMed ID: 21934858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power spectral density analysis of optical substrates for gravitational-wave interferometry.
    Walsh CJ; Leistner AJ; Oreb BF
    Appl Opt; 1999 Aug; 38(22):4790-801. PubMed ID: 18323968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.
    Kwee P; Bogan C; Danzmann K; Frede M; Kim H; King P; Pöld J; Puncken O; Savage RL; Seifert F; Wessels P; Winkelmann L; Willke B
    Opt Express; 2012 May; 20(10):10617-34. PubMed ID: 22565688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shot noise in gravitational-wave detectors with Fabry-Perot arms.
    Lyons TT; Regehr MW; Raab FJ
    Appl Opt; 2000 Dec; 39(36):6761-70. PubMed ID: 18354690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.