These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18493293)

  • 1. Blur-metric-based resolution enhancement of computationally reconstructed integral images.
    Lee KJ; Hwang DC; Kim SC; Kim ES
    Appl Opt; 2008 May; 47(15):2859-69. PubMed ID: 18493293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of location coordinates of 3-D objects from computationally reconstructed integral images basing on a blur metric.
    Hwang DC; Lee KJ; Kim SC; Kim ES
    Opt Express; 2008 Mar; 16(6):3623-35. PubMed ID: 18542455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object.
    Kim SC; Park SC; Kim ES
    Appl Opt; 2009 Dec; 48(34):H95-104. PubMed ID: 19956307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique.
    Hwang DC; Shin DH; Kim SC; Kim ES
    Appl Opt; 2008 Jul; 47(19):D128-35. PubMed ID: 18594568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Defocus Blur Segmentation Scheme Based on Hybrid LTP and PCNN.
    Basar S; Waheed A; Ali M; Zahid S; Zareei M; Biswal RR
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging.
    Shin DH; Lee BG; Lee JJ
    Opt Express; 2008 Oct; 16(21):16294-304. PubMed ID: 18852735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing.
    Hong SH; Javidi B
    Opt Express; 2004 Sep; 12(19):4579-88. PubMed ID: 19484009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for selective removal of out-of-plane structures in digital tomosynthesis.
    Kolitsi Z; Panayiotakis G; Pallikarakis N
    Med Phys; 1993; 20(1):47-50. PubMed ID: 8455511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral Imagery Super-Resolution by Adaptive POCS and Blur Metric.
    Hu S; Zhang S; Zhang A; Chai S
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28054947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does training with blurred images bring convolutional neural networks closer to humans with respect to robust object recognition and internal representations?
    Yoshihara S; Fukiage T; Nishida S
    Front Psychol; 2023; 14():1047694. PubMed ID: 36874839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional volumetric object reconstruction using computational integral imaging.
    Hong SH; Jang JS; Javidi B
    Opt Express; 2004 Feb; 12(3):483-91. PubMed ID: 19474848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images.
    Hyun JB; Hwang DC; Shin DH; Kim ES
    Appl Opt; 2007 Nov; 46(31):7697-708. PubMed ID: 17973014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality.
    Park Y; Lepetit V; Woo W
    IEEE Trans Vis Comput Graph; 2012 Sep; 18(9):1449-59. PubMed ID: 21931174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LBP-Based Segmentation of Defocus Blur.
    Xin Yi ; Eramian M
    IEEE Trans Image Process; 2016 Apr; 25(4):1626-38. PubMed ID: 26886995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image Enhancement for Computational Integral Imaging Reconstruction via Four-Dimensional Image Structure.
    Bae J; Yoo H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth extraction of three-dimensional objects using block matching for slice images in synthetic aperture integral imaging.
    Lee JJ; Lee BG; Yoo H
    Appl Opt; 2011 Oct; 50(29):5624-9. PubMed ID: 22015355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Object Detection via 2D Segmentation-Based Computational Integral Imaging Applied to a Real Video.
    Kadosh M; Yitzhaky Y
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion-tolerant 3D recognition of occluded objects using computational integral imaging.
    Hong SH; Javidi B
    Opt Express; 2006 Dec; 14(25):12085-95. PubMed ID: 19529636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis on the reconstruction error of EPISM based full-parallax holographic stereogram and its improvement with multiple reference plane.
    Yan X; Zhang T; Wang C; Fan F; Wang X; Wang Z; Bi J; Chen S; Lin M; Jiang X
    Opt Express; 2019 Oct; 27(22):32508-32522. PubMed ID: 31684462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.