These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 18493311)
1. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi. Ohnishi Y; Tamura Y; Yoshida M; Tokunaga K; Hohjoh H PLoS One; 2008 May; 3(5):e2248. PubMed ID: 18493311 [TBL] [Abstract][Full Text] [Related]
2. Allele-specific silencing by RNA interference. Hohjoh H Methods Mol Biol; 2010; 623():67-79. PubMed ID: 20217544 [TBL] [Abstract][Full Text] [Related]
3. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles. Ohnishi Y; Tokunaga K; Kaneko K; Hohjoh H J RNAi Gene Silencing; 2006 Feb; 2(1):154-60. PubMed ID: 19771217 [TBL] [Abstract][Full Text] [Related]
4. Influence of assembly of siRNA elements into RNA-induced silencing complex by fork-siRNA duplex carrying nucleotide mismatches at the 3'- or 5'-end of the sense-stranded siRNA element. Ohnishi Y; Tokunaga K; Hohjoh H Biochem Biophys Res Commun; 2005 Apr; 329(2):516-21. PubMed ID: 15737617 [TBL] [Abstract][Full Text] [Related]
6. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs. Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280 [TBL] [Abstract][Full Text] [Related]
7. Designing siRNA that distinguish between genes that differ by a single nucleotide. Schwarz DS; Ding H; Kennington L; Moore JT; Schelter J; Burchard J; Linsley PS; Aronin N; Xu Z; Zamore PD PLoS Genet; 2006 Sep; 2(9):e140. PubMed ID: 16965178 [TBL] [Abstract][Full Text] [Related]
8. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference. Takahashi M; Hohjoh H Mol Biol Rep; 2014 Nov; 41(11):7115-20. PubMed ID: 25037272 [TBL] [Abstract][Full Text] [Related]
9. Profiling of mismatch discrimination in RNAi enabled rational design of allele-specific siRNAs. Huang H; Qiao R; Zhao D; Zhang T; Li Y; Yi F; Lai F; Hong J; Ding X; Yang Z; Zhang L; Du Q; Liang Z Nucleic Acids Res; 2009 Dec; 37(22):7560-9. PubMed ID: 19815667 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of RNAi activity by improved siRNA duplexes. Hohjoh H FEBS Lett; 2004 Jan; 557(1-3):193-8. PubMed ID: 14741366 [TBL] [Abstract][Full Text] [Related]
11. siRNA function in RNAi: a chemical modification analysis. Chiu YL; Rana TM RNA; 2003 Sep; 9(9):1034-48. PubMed ID: 12923253 [TBL] [Abstract][Full Text] [Related]
12. Efficient allele-specific targeting of LRRK2 R1441 mutations mediated by RNAi. de Yñigo-Mojado L; Martín-Ruíz I; Sutherland JD PLoS One; 2011; 6(6):e21352. PubMed ID: 21712955 [TBL] [Abstract][Full Text] [Related]
14. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference. Sierant M; Paduszynska A; Kazmierczak-Baranska J; Nacmias B; Sorbi S; Bagnoli S; Sochacka E; Nawrot B Int J Alzheimers Dis; 2011 Apr; 2011():809218. PubMed ID: 21559198 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme. Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374 [TBL] [Abstract][Full Text] [Related]
16. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036 [TBL] [Abstract][Full Text] [Related]
17. A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Du Q; Thonberg H; Wang J; Wahlestedt C; Liang Z Nucleic Acids Res; 2005; 33(5):1671-7. PubMed ID: 15781493 [TBL] [Abstract][Full Text] [Related]
18. ASPsiRNA: A Resource of ASP-siRNAs Having Therapeutic Potential for Human Genetic Disorders and Algorithm for Prediction of Their Inhibitory Efficacy. Monga I; Qureshi A; Thakur N; Gupta AK; Kumar M G3 (Bethesda); 2017 Sep; 7(9):2931-2943. PubMed ID: 28696921 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the RNA Interference Activity Using Central Mismatched siRNAs and Acyclic Threoninol Nucleic Acids (aTNA) Units. Alagia A; Terrazas M; Eritja R Molecules; 2015 Apr; 20(5):7602-19. PubMed ID: 25919280 [TBL] [Abstract][Full Text] [Related]
20. Silencing activity of 2'-O-methyl modified anti-MDR1 siRNAs with mismatches in the central part of the duplexes. Petrova NS; Meschaninova MI; Venyaminova AG; Zenkova MA; Vlassov VV; Chernolovskaya EL FEBS Lett; 2011 Jul; 585(14):2352-6. PubMed ID: 21704032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]