BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18493682)

  • 1. An electrochemiluminescent biosensor for uric acid based on the electrochemiluminescence of bis-[3,4,6-trichloro-2-(pentyloxycarbonyl)-phenyl] oxalate on an ITO electrode modified by an electropolymerized nickel phthalocyanine film.
    Lin Z; Chen Z; Liu Y; Wang J; Chen G
    Analyst; 2008 Jun; 133(6):797-801. PubMed ID: 18493682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new electrochemiluminescent sensing system for glucose based on the electrochemiluminescent reaction of bis-[3,4,6-trichloro-2-(pentyloxycarbonyl)-phenyl] oxalate.
    Chen Z; Wang J; Lin Z; Chen G
    Talanta; 2007 Jun; 72(4):1410-5. PubMed ID: 19071777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode.
    Qiu B; Lin Z; Wang J; Chen Z; Chen J; Chen G
    Talanta; 2009 Apr; 78(1):76-80. PubMed ID: 19174206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode.
    Yue HY; Zhang H; Chang J; Gao X; Huang S; Yao LH; Lin XY; Guo EJ
    Anal Biochem; 2015 Nov; 488():22-7. PubMed ID: 26254685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enhanced electrochemiluminescence of luminol on the nickel phthalocyanine modified electrode.
    Wang J; Chen G; Huang J
    Analyst; 2005 Jan; 130(1):71-5. PubMed ID: 15614356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reagentless uric acid biosensor based on Ni microdiscs-loaded NiO thin film matrix.
    Arora K; Tomar M; Gupta V
    Analyst; 2014 Sep; 139(18):4606-12. PubMed ID: 25046556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biophys Chem; 2007 Feb; 125(2-3):540-8. PubMed ID: 17166647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film.
    Cete S; Yaşar A; Arslan F
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):367-80. PubMed ID: 16809136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis.
    Wu S; Zhou Z; Xu L; Su B; Fang Q
    Biosens Bioelectron; 2014 Mar; 53():148-53. PubMed ID: 24140829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film.
    Bhambi M; Sumana G; Malhotra BD; Pundir CS
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Aug; 38(4):178-85. PubMed ID: 20367113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing performance of uricase using multiwalled carbon nanotube doped polyaniline.
    Arora K; Choudhary M; Malhotra BD
    Appl Biochem Biotechnol; 2014 Oct; 174(3):1174-87. PubMed ID: 24928549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging.
    Zhou Z; Xu L; Wu S; Su B
    Analyst; 2014 Oct; 139(19):4934-9. PubMed ID: 25068822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel molecularly imprinted polymer thin film as biosensor for uric acid.
    Chen PY; Vittal R; Nien PC; Liou GS; Ho KC
    Talanta; 2010 Jan; 80(3):1145-51. PubMed ID: 20006066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid.
    Behera S; Raj CR
    Biosens Bioelectron; 2007 Nov; 23(4):556-61. PubMed ID: 17719217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New electrochemiluminescent biosensors combining polyluminol and an enzymatic matrix.
    Sassolas A; Blum LJ; Leca-Bouvier BD
    Anal Bioanal Chem; 2009 Jun; 394(4):971-80. PubMed ID: 19390845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disposable luminol copolymer-based biosensor for uric acid in urine.
    Ballesta-Claver J; Díaz Ortega IF; Valencia-Mirón MC; Capitán-Vallvey LF
    Anal Chim Acta; 2011 Sep; 702(2):254-61. PubMed ID: 21839206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase.
    Lin Z; Sun J; Chen J; Guo L; Chen Y; Chen G
    Anal Chem; 2008 Apr; 80(8):2826-31. PubMed ID: 18315011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode.
    Lin J; Zhang L; Zhang S
    Anal Biochem; 2007 Nov; 370(2):180-5. PubMed ID: 17637455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enzymatic biosensor for hydrogen peroxide based on CeO2 nanostructure electrodeposited on ITO surface.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Sep; 47():385-90. PubMed ID: 23608540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode.
    Chen J; Lin Z; Chen G
    Anal Bioanal Chem; 2007 May; 388(2):399-407. PubMed ID: 17342537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.