BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18494490)

  • 1. Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem.
    Eeckhaut E; Struijs K; Possemiers S; Vincken JP; Keukeleire DD; Verstraete W
    J Agric Food Chem; 2008 Jun; 56(12):4806-12. PubMed ID: 18494490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside.
    Clavel T; Henderson G; Engst W; Doré J; Blaut M
    FEMS Microbiol Ecol; 2006 Mar; 55(3):471-8. PubMed ID: 16466386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans.
    Clavel T; Borrmann D; Braune A; Doré J; Blaut M
    Anaerobe; 2006 Jun; 12(3):140-7. PubMed ID: 16765860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside.
    Roncaglia L; Amaretti A; Raimondi S; Leonardi A; Rossi M
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):159-68. PubMed ID: 21614502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccessibility of lignans from flaxseed (Linum usitatissimum L.) determined by single-batch in vitro simulation of the digestive process.
    Fuentealba C; Figuerola F; Estévez AM; Bastías JM; Muñoz O
    J Sci Food Agric; 2014 Jul; 94(9):1729-38. PubMed ID: 24243589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.
    Mukker JK; Singh RS; Muir AD; Krol ES; Alcorn J
    Br J Nutr; 2015 Mar; 113(5):749-57. PubMed ID: 25716060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside.
    Adolphe JL; Whiting SJ; Juurlink BH; Thorpe LU; Alcorn J
    Br J Nutr; 2010 Apr; 103(7):929-38. PubMed ID: 20003621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial transformation of dietary lignans in gnotobiotic rats.
    Woting A; Clavel T; Loh G; Blaut M
    FEMS Microbiol Ecol; 2010 Jun; 72(3):507-14. PubMed ID: 20370826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing exposure to lignans and their metabolites in humans.
    Lampe JW; Atkinson C; Hullar MA
    J AOAC Int; 2006; 89(4):1174-81. PubMed ID: 16915861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans.
    Jin JS; Hattori M
    J Agric Food Chem; 2009 Aug; 57(16):7537-42. PubMed ID: 19630415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Wang LQ; Meselhy MR; Li Y; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1606-10. PubMed ID: 11086885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides.
    Struijs K; Vincken JP; Doeswijk TG; Voragen AG; Gruppen H
    Phytochemistry; 2009 Jan; 70(2):262-9. PubMed ID: 19155025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of different lignan compounds on enterolignan production by Bifidobacterium and Lactobacillus strains.
    Peirotén Á; Gaya P; Álvarez I; Bravo D; Landete JM
    Int J Food Microbiol; 2019 Jan; 289():17-23. PubMed ID: 30193121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats.
    Felmlee MA; Woo G; Simko E; Krol ES; Muir AD; Alcorn J
    Br J Nutr; 2009 Aug; 102(3):361-9. PubMed ID: 19216812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development.
    Ramsay A; Fliniaux O; Quéro A; Molinié R; Demailly H; Hano C; Paetz C; Roscher A; Grand E; Kovensky J; Schneider B; Mesnard F
    Food Chem; 2017 Feb; 217():1-8. PubMed ID: 27664601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytostatic inhibition of cancer cell growth by lignan secoisolariciresinol diglucoside.
    Ayella A; Lim S; Jiang Y; Iwamoto T; Lin D; Tomich J; Wang W
    Nutr Res; 2010 Nov; 30(11):762-9. PubMed ID: 21130295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the mammalian lignan precursor secoisolariciresinol diglucoside in flax seed by ionspray mass spectrometry.
    Bambagiotti-Alberti M; Coran SA; Ghiara C; Giannellini V; Raffaelli A
    Rapid Commun Mass Spectrom; 1994 Aug; 8(8):595-8. PubMed ID: 7949328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans.
    Setchell KD; Brown NM; Zimmer-Nechemias L; Wolfe B; Jha P; Heubi JE
    Food Funct; 2014 Mar; 5(3):491-501. PubMed ID: 24429845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls.
    Struijs K; Vincken JP; Verhoef R; Voragen AG; Gruppen H
    Phytochemistry; 2008 Mar; 69(5):1250-60. PubMed ID: 18187168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol.
    Struijs K; Vincken JP; Gruppen H
    J Appl Microbiol; 2009 Jul; 107(1):308-17. PubMed ID: 19302311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.