These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18494530)

  • 1. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms.
    Klontzas E; Mavrandonakis A; Tylianakis E; Froudakis GE
    Nano Lett; 2008 Jun; 8(6):1572-6. PubMed ID: 18494530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium-functionalized metal-organic frameworks that show >10 wt% H2 uptake at ambient temperature.
    Han SS; Jung DH; Choi SH; Heo J
    Chemphyschem; 2013 Aug; 14(12):2698-703. PubMed ID: 23784818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanoscale; 2011 Mar; 3(3):856-69. PubMed ID: 21218227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the structure, stability and hydrogen adsorption of lithium functionalized isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by density functional theory.
    Venkataramanan NS; Sahara R; Mizuseki H; Kawazoe Y
    Int J Mol Sci; 2009 Apr; 10(4):1601-1608. PubMed ID: 19468328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Gas Adsorption Mechanisms in Metal-Organic Frameworks from Classical Molecular Simulations.
    Pham T; Space B
    Top Curr Chem (Cham); 2020 Jan; 378(1):14. PubMed ID: 31933069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hydrogen storage nanotank: lithium-organic pillared graphite.
    Han SS; Jang SS
    Chem Commun (Camb); 2009 Sep; (36):5427-9. PubMed ID: 19724807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study.
    Mavrandonakis A; Klontzas E; Tylianakis E; Froudakis GE
    J Am Chem Soc; 2009 Sep; 131(37):13410-4. PubMed ID: 19754188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature.
    Han SS; William A G
    J Am Chem Soc; 2007 Jul; 129(27):8422-3. PubMed ID: 17569539
    [No Abstract]   [Full Text] [Related]  

  • 10. Designing 3D COFs with enhanced hydrogen storage capacity.
    Klontzas E; Tylianakis E; Froudakis GE
    Nano Lett; 2010 Feb; 10(2):452-4. PubMed ID: 20050693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover.
    Suri M; Dornfeld M; Ganz E
    J Chem Phys; 2009 Nov; 131(17):174703. PubMed ID: 19895031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K.
    Mendoza-Cortés JL; Han SS; Goddard WA
    J Phys Chem A; 2012 Feb; 116(6):1621-31. PubMed ID: 22188543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen storage in metal-organic frameworks.
    Hu YH; Zhang L
    Adv Mater; 2010 May; 22(20):E117-30. PubMed ID: 20641092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage.
    Guo JH; Zhang H; Miyamoto Y
    Phys Chem Chem Phys; 2013 Jun; 15(21):8199-207. PubMed ID: 23609981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels.
    Stern AC; Belof JL; Eddaoudi M; Space B
    J Chem Phys; 2012 Jan; 136(3):034705. PubMed ID: 22280775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.
    Deng QM; Zhao L; Luo YH; Zhang M; Zhao LX; Zhao Y
    Nanoscale; 2011 Nov; 3(11):4824-9. PubMed ID: 21997243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling.
    Poirier E; Dailly A
    Nanotechnology; 2009 May; 20(20):204006. PubMed ID: 19420654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SiC nanotubes: A novel material for hydrogen storage.
    Mpourmpakis G; Froudakis GE; Lithoxoos GP; Samios J
    Nano Lett; 2006 Aug; 6(8):1581-3. PubMed ID: 16895338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio carbon capture in open-site metal-organic frameworks.
    Dzubak AL; Lin LC; Kim J; Swisher JA; Poloni R; Maximoff SN; Smit B; Gagliardi L
    Nat Chem; 2012 Oct; 4(10):810-6. PubMed ID: 23000994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the hydrogen storage properties of metal-organic framework by functionalization.
    Xia L; Liu Q; Wang F; Lu J
    J Mol Model; 2016 Oct; 22(10):254. PubMed ID: 27699551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.