BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18494543)

  • 21. Monitoring starvation-induced reactive oxygen species formation.
    Scherz-Shouval R; Elazar Z
    Methods Enzymol; 2009; 452():119-30. PubMed ID: 19200879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug resistance to 5-FU linked to reactive oxygen species modulator 1.
    Hwang IT; Chung YM; Kim JJ; Chung JS; Kim BS; Kim HJ; Kim JS; Yoo YD
    Biochem Biophys Res Commun; 2007 Jul; 359(2):304-10. PubMed ID: 17537404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity.
    Annunen-Rasila J; Ohlmeier S; Tuokko H; Veijola J; Majamaa K
    Proteomics; 2007 Jun; 7(13):2189-200. PubMed ID: 17533645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture.
    Dorai H; Kyung YS; Ellis D; Kinney C; Lin C; Jan D; Moore G; Betenbaugh MJ
    Biotechnol Bioeng; 2009 Jun; 103(3):592-608. PubMed ID: 19241388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel protein, Romo1, induces ROS production in the mitochondria.
    Chung YM; Kim JS; Yoo YD
    Biochem Biophys Res Commun; 2006 Sep; 347(3):649-55. PubMed ID: 16842742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploiting proteomics in the discovery of drugs that target mitochondrial oxidative damage.
    Gibson BW
    Sci Aging Knowledge Environ; 2004 Mar; 2004(11):pe12. PubMed ID: 15028863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging.
    Bulteau AL; Szweda LI; Friguet B
    Exp Gerontol; 2006 Jul; 41(7):653-7. PubMed ID: 16677792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress.
    Kang TH; Bae KH; Yu MJ; Kim WK; Hwang HR; Jung H; Lee PY; Kang S; Yoon TS; Park SG; Ryu SE; Lee SC
    Proteomics; 2007 Aug; 7(15):2624-35. PubMed ID: 17610204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes.
    Costa VM; Silva R; Tavares LC; Vitorino R; Amado F; Carvalho F; Bastos Mde L; Carvalho M; Carvalho RA; Remião F
    Toxicology; 2009 Jun; 260(1-3):84-96. PubMed ID: 19464573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive oxygen species-induced cell death of rat primary astrocytes through mitochondria-mediated mechanism.
    Wang CC; Fang KM; Yang CS; Tzeng SF
    J Cell Biochem; 2009 Aug; 107(5):933-43. PubMed ID: 19459161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of canine mitochondrial protein expression in natural and induced forms of idiopathic dilated cardiomyopathy.
    Lopes R; Solter PF; Sisson DD; Oyama MA; Prosek R
    Am J Vet Res; 2006 Jun; 67(6):963-70. PubMed ID: 16740088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate.
    Dinnis DM; Stansfield SH; Schlatter S; Smales CM; Alete D; Birch JR; Racher AJ; Marshall CT; Nielsen LK; James DC
    Biotechnol Bioeng; 2006 Aug; 94(5):830-41. PubMed ID: 16489627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells.
    Ogura A; Oowada S; Kon Y; Hirayama A; Yasui H; Meike S; Kobayashi S; Kuwabara M; Inanami O
    Cancer Lett; 2009 May; 277(1):64-71. PubMed ID: 19117669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect.
    Nagar S; Smith LE; Morgan WF
    Cancer Res; 2003 Jan; 63(2):324-8. PubMed ID: 12543783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity.
    Prabhakaran K; Chapman GD; Gunasekar PG
    Neurotoxicology; 2009 May; 30(3):414-22. PubMed ID: 19442826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Mitochondria in cell life, death and disease].
    Wojtczak L; Zabłocki K
    Postepy Biochem; 2008; 54(2):129-41. PubMed ID: 18807924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profiling of mitochondrial associated proteins from rat colon.
    Padidar S; Bestwick CS; King TP; Rucklidge GJ; Duncan GJ; Reid MD; Drew JE
    J Cell Biochem; 2008 Jan; 103(1):78-97. PubMed ID: 17497683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake.
    Schoonen WG; Westerink WM; de Roos JA; Débiton E
    Toxicol In Vitro; 2005 Jun; 19(4):505-16. PubMed ID: 15826808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells.
    Xu S; Zhong M; Zhang L; Wang Y; Zhou Z; Hao Y; Zhang W; Yang X; Wei A; Pei L; Yu Z
    FEBS J; 2009 Jul; 276(14):3800-9. PubMed ID: 19496804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.