These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 18494737)
1. Acceleration of plastoquinone pool reduction by alternative pathways precedes a decrease in photosynthetic CO2 assimilation in preheated barley leaves. Kana R; Kotabová E; Prásil O Physiol Plant; 2008 Aug; 133(4):794-806. PubMed ID: 18494737 [TBL] [Abstract][Full Text] [Related]
2. The temperature response of C(3) and C(4) photosynthesis. Sage RF; Kubien DS Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749 [TBL] [Abstract][Full Text] [Related]
3. The photosynthetic properties of rice leaves treated with low temperature and high irradiance. Hirotsu N; Makino A; Yokota S; Mae T Plant Cell Physiol; 2005 Aug; 46(8):1377-83. PubMed ID: 15951567 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Jiang HX; Tang N; Zheng JG; Li Y; Chen LS Physiol Plant; 2009 Nov; 137(3):298-311. PubMed ID: 19832942 [TBL] [Abstract][Full Text] [Related]
5. Glyphosate uncouples gas exchange and chlorophyll fluorescence. Olesen CF; Cedergreen N Pest Manag Sci; 2010 May; 66(5):536-42. PubMed ID: 20127759 [TBL] [Abstract][Full Text] [Related]
6. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482 [TBL] [Abstract][Full Text] [Related]
7. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233 [TBL] [Abstract][Full Text] [Related]
8. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.]. Way DA; Sage RF Plant Cell Environ; 2008 Sep; 31(9):1250-62. PubMed ID: 18532986 [TBL] [Abstract][Full Text] [Related]
9. Temperature response of photosynthesis in transgenic rice transformed with 'sense' or 'antisense' rbcS. Makino A; Sage RF Plant Cell Physiol; 2007 Oct; 48(10):1472-83. PubMed ID: 17804480 [TBL] [Abstract][Full Text] [Related]
10. DCMU inhibits in vivo nitrate reduction in illuminated barley (C(3)) leaves but not in maize (C(4)): a new mechanism for the role of light? Basra AS; Dhawan AK; Goyal SS Planta; 2002 Sep; 215(5):855-61. PubMed ID: 12244452 [TBL] [Abstract][Full Text] [Related]
11. Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Alonso A; Pérez P; Martínez-Carrasco R Physiol Plant; 2009 Feb; 135(2):109-20. PubMed ID: 19055543 [TBL] [Abstract][Full Text] [Related]
12. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Miyake C; Amako K; Shiraishi N; Sugimoto T Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745 [TBL] [Abstract][Full Text] [Related]
13. The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. Yamori W; Noguchi K; Kashino Y; Terashima I Plant Cell Physiol; 2008 Apr; 49(4):583-91. PubMed ID: 18296450 [TBL] [Abstract][Full Text] [Related]
15. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Bagard M; Le Thiec D; Delacote E; Hasenfratz-Sauder MP; Banvoy J; Gérard J; Dizengremel P; Jolivet Y Physiol Plant; 2008 Dec; 134(4):559-74. PubMed ID: 18823329 [TBL] [Abstract][Full Text] [Related]
16. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300 [TBL] [Abstract][Full Text] [Related]
17. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Crafts-Brandner SJ; Law RD Planta; 2000 Dec; 212(1):67-74. PubMed ID: 11219585 [TBL] [Abstract][Full Text] [Related]
18. Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Araya T; Noguchi K; Terashima I Plant Cell Environ; 2008 Jan; 31(1):50-61. PubMed ID: 17944816 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic activity during olive (Olea europaea) leaf development correlates with plastid biogenesis and Rubisco levels. Maayan I; Shaya F; Ratner K; Mani Y; Lavee S; Avidan B; Shahak Y; Ostersetzer-Biran O Physiol Plant; 2008 Nov; 134(3):547-58. PubMed ID: 18636989 [TBL] [Abstract][Full Text] [Related]
20. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Li Y; Gao Y; Xu X; Shen Q; Guo S J Exp Bot; 2009; 60(8):2351-60. PubMed ID: 19395387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]