BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18494932)

  • 1. Vasomotion dynamics following calcium spiking depend on both cell signalling and limited constriction velocity in rat mesenteric small arteries.
    VanBavel E; van der Meulen ET; Spaan JA
    J Cell Mol Med; 2008 Jun; 12(3):899-913. PubMed ID: 18494932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries.
    Wesselman JP; VanBavel E; Pfaffendorf M; Spaan JA
    J Vasc Res; 1996; 33(1):32-41. PubMed ID: 8603124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraluminal pressure modulates the magnitude and the frequency of induced vasomotion in rat arteries.
    Achakri H; Stergiopulos N; Hoogerwerf N; Hayoz D; Brunner HR; Meister JJ
    J Vasc Res; 1995; 32(4):237-46. PubMed ID: 7544632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth muscle gap-junctions allow propagation of intercellular Ca
    Borysova L; Dora KA; Garland CJ; Burdyga T
    Cell Calcium; 2018 Nov; 75():21-29. PubMed ID: 30114532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase resetting of arterial vasomotion by burst stimulation of perivascular nerves.
    Borovik A; Golubinskaya V; Tarasova O; Aalkjaer C; Nilsson H
    J Vasc Res; 2005; 42(2):165-73. PubMed ID: 15767763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between L-type Ca2+ channels and sarcoplasmic reticulum in the regulation of vascular tone in isolated rat small arteries.
    Takeuchi M; Watanabe J; Horiguchi S; Karibe A; Katoh H; Baba S; Shinozaki T; Miura M; Fukuchi M; Kagaya Y; Shirato K
    J Cardiovasc Pharmacol; 2000 Nov; 36(5):548-54. PubMed ID: 11065213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium dynamics and vasomotion in rat mesenteric arteries.
    Schuster A; Lamboley M; Grange C; Oishi H; Bény JL; Stergiopulos N; Meister JJ
    J Cardiovasc Pharmacol; 2004 Apr; 43(4):539-48. PubMed ID: 15085065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothesis for the initiation of vasomotion.
    Peng H; Matchkov V; Ivarsen A; Aalkjaer C; Nilsson H
    Circ Res; 2001 Apr; 88(8):810-5. PubMed ID: 11325873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pressure alterations on tone and vasomotion of isolated mesenteric small arteries of the rat.
    VanBavel E; Giezeman MJ; Mooij T; Spaan JA
    J Physiol; 1991 May; 436():371-83. PubMed ID: 2061837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of IBMX on norepinephrine-induced vasoconstriction in small mesenteric arteries.
    Taylor MS; Gao H; Gardner JD; Benoit JN
    Am J Physiol; 1999 Apr; 276(4):G909-14. PubMed ID: 10198334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries.
    Mauban JR; Wier WG
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H608-16. PubMed ID: 15059779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Na+/Ca2+ exchanger to the regulation of myogenic tone in isolated rat small arteries.
    Horiguchi S; Watanabe J; Kato H; Baba S; Shinozaki T; Miura M; Fukuchi M; Kagaya Y; Shirato K
    Acta Physiol Scand; 2001 Oct; 173(2):167-73. PubMed ID: 11683674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Rho-associated protein kinase in tone and calcium sensitivity of cannulated rat mesenteric small arteries.
    VanBavel E; van der Meulen ET; Spaan JA
    Exp Physiol; 2001 Sep; 86(5):585-92. PubMed ID: 11571485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg2+ blocks myogenic tone but not K+-induced constriction: role for SOCs in small arteries.
    Zhang J; Wier WG; Blaustein MP
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2692-705. PubMed ID: 12388301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular calcium stores and oscillatory contractions in arteries from genetically hypertensive rats.
    Tostes RC; Storm DS; Chi DH; Webb RC
    Hypertens Res; 1996 Jun; 19(2):103-11. PubMed ID: 10968203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of membrane potential in vasomotion of isolated pressurized rat arteries.
    Oishi H; Schuster A; Lamboley M; Stergiopulos N; Meister JJ; Bény JL
    Life Sci; 2002 Sep; 71(19):2239-48. PubMed ID: 12215371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated microgravity alters rat mesenteric artery vasoconstrictor dynamics through an intracellular Ca(2+) release mechanism.
    Colleran PN; Behnke BJ; Wilkerson MK; Donato AJ; Delp MD
    Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1577-85. PubMed ID: 18353882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasomotion and underlying mechanisms in small arteries. An in vitro study of rat blood vessels.
    Gustafsson H
    Acta Physiol Scand Suppl; 1993; 614():1-44. PubMed ID: 8128886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KCa-channel blockade prevents sustained pressure-induced depolarization in rat mesenteric small arteries.
    Wesselman JP; Schubert R; VanBavel ED; Nilsson H; Mulvany MJ
    Am J Physiol; 1997 May; 272(5 Pt 2):H2241-9. PubMed ID: 9176292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.