These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18495241)

  • 1. The new insight on ultrastructure of C-type starch granules revealed by acid hydrolysis.
    Wang S; Yu J; Jin F; Yu J
    Int J Biol Macromol; 2008 Aug; 43(2):216-20. PubMed ID: 18495241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme.
    Wei C; Qin F; Zhou W; Yu H; Xu B; Chen C; Zhu L; Wang Y; Gu M; Liu Q
    J Agric Food Chem; 2010 Nov; 58(22):11946-54. PubMed ID: 21033746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and location of amorphous and semi-crystalline regions in C-type starch granules revealed by SEM, NMR and XRD.
    Wang S; Yu J; Yu J
    Food Chem; 2008 Sep; 110(1):39-46. PubMed ID: 26050163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of individual and compound starch granules in isolation preparation from a high-quality, low-amylose rice, ilpumbyeo, and its mutant, G2, a high-dietary fiber, high-amylose rice.
    Kim KS; Hwang HG; Kang HJ; Hwang IK; Lee YT; Choi HC
    J Agric Food Chem; 2005 Nov; 53(22):8745-51. PubMed ID: 16248580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis.
    Hernández-Jaimes C; Bello-Pérez LA; Vernon-Carter EJ; Alvarez-Ramirez J
    Carbohydr Polym; 2013 Jun; 95(1):207-13. PubMed ID: 23618261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch.
    Vigneshwaran N; Nachane RP; Balasubramanya RH; Varadarajan PV
    Carbohydr Res; 2006 Sep; 341(12):2012-8. PubMed ID: 16716274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular structure of waxy maize starch nanocrystals.
    Angellier-Coussy H; Putaux JL; Molina-Boisseau S; Dufresne A; Bertoft E; Perez S
    Carbohydr Res; 2009 Aug; 344(12):1558-66. PubMed ID: 19414173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative ultrastructure of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464: scanning and transmission electron microscopy studies.
    Kim KS; Kang HJ; Hwang IK; Hwang HG; Kim TY; Choi HC
    J Agric Food Chem; 2004 Jun; 52(12):3876-83. PubMed ID: 15186110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis.
    Putaux JL; Molina-Boisseau S; Momaur T; Dufresne A
    Biomacromolecules; 2003; 4(5):1198-202. PubMed ID: 12959584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals.
    Viguié J; Molina-Boisseau S; Dufresne A
    Macromol Biosci; 2007 Nov; 7(11):1206-16. PubMed ID: 17712803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications.
    Valodkar M; Thakore S
    Carbohydr Res; 2010 Nov; 345(16):2354-60. PubMed ID: 20851382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.
    Dhital S; Butardo VM; Jobling SA; Gidley MJ
    Carbohydr Polym; 2015 Jan; 115():305-16. PubMed ID: 25439899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New starches from traditional Chinese medicine (TCM)--Chinese yam (Dioscorea opposita Thunb.) cultivars.
    Shujun W; Jinglin Y; Wenyuan G; Hongyan L; Peigen X
    Carbohydr Res; 2006 Feb; 341(2):289-93. PubMed ID: 16325789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starch nanoparticles formation via high power ultrasonication.
    Bel Haaj S; Magnin A; Pétrier C; Boufi S
    Carbohydr Polym; 2013 Feb; 92(2):1625-32. PubMed ID: 23399199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch nanocrystals with large chain surface modifications.
    Thielemans W; Belgacem MN; Dufresne A
    Langmuir; 2006 May; 22(10):4804-10. PubMed ID: 16649799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the alkaline treatment on the ultrastructure of C-type starch granules.
    Thys RC; Westfahl H; Noreña CP; Marczak LD; Silveira NP; Cardoso MB
    Biomacromolecules; 2008 Jul; 9(7):1894-901. PubMed ID: 18517249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitional properties of starch colloid with particle size reduction from micro- to nanometer.
    Liu D; Wu Q; Chen H; Chang PR
    J Colloid Interface Sci; 2009 Nov; 339(1):117-24. PubMed ID: 19666174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical force mapping of phosphate and carbon on acid-modified tapioca starch surface.
    Wuttisela K; Triampo W; Triampo D
    Int J Biol Macromol; 2009 Jan; 44(1):86-91. PubMed ID: 19022283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology, associated protein analysis, and identification of 58-kDa starch synthase in mungbean (Vigna radiata L. cv. KPS1) starch granule preparations.
    Ko YT; Dong YL; Hsieh YF; Kuo JC
    J Agric Food Chem; 2009 May; 57(10):4426-32. PubMed ID: 19371027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine pancreatic alpha-amylase hydrolysis of native starch granules as a function of granule surface area.
    Kong BW; Kim JI; Kim MJ; Kim JC
    Biotechnol Prog; 2003; 19(4):1162-6. PubMed ID: 12892477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.