These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1067 related articles for article (PubMed ID: 18495445)
1. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445 [TBL] [Abstract][Full Text] [Related]
2. Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO2. Kang Y; Wu J; Yin G; Huang Z; Liao X; Yao Y; Ouyang P; Wang H; Yang Q Langmuir; 2008 Jul; 24(14):7432-41. PubMed ID: 18547089 [TBL] [Abstract][Full Text] [Related]
3. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS). Kang Y; Yin G; Ouyang P; Huang Z; Yao Y; Liao X; Chen A; Pu X J Colloid Interface Sci; 2008 Jun; 322(1):87-94. PubMed ID: 18402971 [TBL] [Abstract][Full Text] [Related]
4. Tumor-targeted paclitaxel-loaded folate conjugated poly(ethylene glycol)-poly(L-lactide) microparticles produced by supercritical fluid technology. Huang X; Zhang Y; Yin G; Pu X; Liao X; Huang Z; Chen X; Yao Y J Mater Sci Mater Med; 2015 Feb; 26(2):95. PubMed ID: 25649516 [TBL] [Abstract][Full Text] [Related]
5. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique. Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
7. PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability. Obayemi JD; Danyuo Y; Dozie-Nwachukwu S; Odusanya OS; Anuku N; Malatesta K; Yu W; Uhrich KE; Soboyejo WO Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():51-65. PubMed ID: 27207038 [TBL] [Abstract][Full Text] [Related]
8. Development of disulfiram-loaded poly(lactic-co-glycolic acid) wafers for the localised treatment of glioblastoma multiforme: a comparison of manufacturing techniques. Zembko I; Ahmed I; Farooq A; Dail J; Tawari P; Wang W; Mcconville C J Pharm Sci; 2015 Mar; 104(3):1076-86. PubMed ID: 25537972 [TBL] [Abstract][Full Text] [Related]
9. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor. Desai KG; Mallery SR; Schwendeman SP Pharm Res; 2008 Mar; 25(3):586-97. PubMed ID: 17891553 [TBL] [Abstract][Full Text] [Related]
10. Development of bicalutamide-loaded PLGA nanoparticles: preparation, characterization and in-vitro evaluation for the treatment of prostate cancer. Ray S; Ghosh Ray S; Mandal S Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):944-954. PubMed ID: 27327352 [TBL] [Abstract][Full Text] [Related]
11. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. Keohane K; Brennan D; Galvin P; Griffin BT Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950 [TBL] [Abstract][Full Text] [Related]
12. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods. Li Y; Yang DJ; Chen SL; Chen SB; Chan AS Pharm Res; 2008 Mar; 25(3):563-77. PubMed ID: 17828444 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. Perinelli DR; Bonacucina G; Cespi M; Naylor A; Whitaker M; Palmieri GF; Giorgioni G; Casettari L Int J Pharm; 2014 Jul; 468(1-2):250-7. PubMed ID: 24746690 [TBL] [Abstract][Full Text] [Related]
14. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795 [TBL] [Abstract][Full Text] [Related]
15. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131 [TBL] [Abstract][Full Text] [Related]
16. PLGA/SBA-15 mesoporous silica composite microparticles loaded with paclitaxel for local chemotherapy. Nanaki S; Siafaka PI; Zachariadou D; Nerantzaki M; Giliopoulos DJ; Triantafyllidis KS; Kostoglou M; Nikolakaki E; Bikiaris DN Eur J Pharm Sci; 2017 Mar; 99():32-44. PubMed ID: 27939620 [TBL] [Abstract][Full Text] [Related]
17. Preparation of sustained release microparticles with improved initial release property. Jung GY; Na YE; Park MS; Park CS; Myung PK Arch Pharm Res; 2009 Mar; 32(3):359-65. PubMed ID: 19387579 [TBL] [Abstract][Full Text] [Related]
18. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Niu X; Zou W; Liu C; Zhang N; Fu C Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638 [TBL] [Abstract][Full Text] [Related]
19. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Nair K L; Jagadeeshan S; Nair SA; Kumar GS Int J Nanomedicine; 2011; 6():1685-97. PubMed ID: 21980233 [TBL] [Abstract][Full Text] [Related]