BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1352 related articles for article (PubMed ID: 18495445)

  • 21. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of 5-fluorouracil-loaded PLLA-PEG/PEG nanoparticles by a novel supercritical CO2 technique.
    Zhang C; Li G; Wang Y; Cui F; Zhang J; Huang Q
    Int J Pharm; 2012 Oct; 436(1-2):272-81. PubMed ID: 22721846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide.
    Graves RA; Ledet GA; Glotser EY; Mitchner DM; Bostanian LA; Mandal TK
    Eur J Pharm Sci; 2015 Aug; 76():1-9. PubMed ID: 25933716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Fe3O4-poly(L-lactide) magnetic microparticles in supercritical CO2.
    Chen AZ; Kang YQ; Pu XM; Yin GF; Li Y; Hu JY
    J Colloid Interface Sci; 2009 Feb; 330(2):317-22. PubMed ID: 19036387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and in vitro evaluation of etoposide-loaded PLGA microspheres for pulmonary drug delivery.
    Feng R; Zhang Z; Li Z; Huang G
    Drug Deliv; 2014 May; 21(3):185-92. PubMed ID: 24107001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles.
    Klose D; Delplace C; Siepmann J
    Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altering the drug release profiles of double-layered ternary-phase microparticles.
    Lee WL; Loei C; Widjaja E; Loo SC
    J Control Release; 2011 May; 151(3):229-38. PubMed ID: 21352877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration.
    Nath SD; Son S; Sadiasa A; Min YK; Lee BT
    Int J Pharm; 2013 Feb; 443(1-2):87-94. PubMed ID: 23291448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres.
    Chen W; Palazzo A; Hennink WE; Kok RJ
    Mol Pharm; 2017 Feb; 14(2):459-467. PubMed ID: 27973854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts.
    Porta GD; Campardelli R; Falco N; Reverchon E
    J Pharm Sci; 2011 Oct; 100(10):4357-67. PubMed ID: 21638283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-soluble betamethasone-loaded poly(lactide-co-glycolide) hollow microparticles as a sustained release dosage form.
    Chaw CS; Yang YY; Lim IJ; Phan TT
    J Microencapsul; 2003; 20(3):349-59. PubMed ID: 12881115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and physicochemical characterization of T-OA PLGA microspheres.
    Fu J; Dong XX; Zeng ZP; Yin XB; Li FW; Ni J
    Chin J Nat Med; 2017 Dec; 15(12):912-916. PubMed ID: 29329648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells.
    Mo L; Hou L; Guo D; Xiao X; Mao P; Yang X
    Int J Pharm; 2012 Oct; 436(1-2):815-24. PubMed ID: 22846410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: an assessment by isothermal microcalorimetry.
    Ferreira IS; Bettencourt A; Bétrisey B; Gonçalves LM; Trampuz A; Almeida AJ
    Int J Pharm; 2015 May; 485(1-2):171-82. PubMed ID: 25772414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies.
    Jordan F; Naylor A; Kelly CA; Howdle SM; Lewis A; Illum L
    J Control Release; 2010 Jan; 141(2):153-60. PubMed ID: 19772878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer.
    Sun B; Ranganathan B; Feng SS
    Biomaterials; 2008 Feb; 29(4):475-86. PubMed ID: 17953985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release.
    Hao S; Wang Y; Wang B; Deng J; Zhu L; Cao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():113-9. PubMed ID: 24863206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formulation of anastrozole microparticles as biodegradable anticancer drug carriers.
    Zidan AS; Sammour OA; Hammad MA; Megrab NA; Hussain MD; Khan MA; Habib MJ
    AAPS PharmSciTech; 2006 Jul; 7(3):61. PubMed ID: 17025242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 68.