These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18495541)

  • 1. Voluntary brain regulation and communication with electrocorticogram signals.
    Hinterberger T; Widman G; Lal TN; Hill J; Tangermann M; Rosenstiel W; Schölkopf B; Elger C; Birbaumer N
    Epilepsy Behav; 2008 Aug; 13(2):300-6. PubMed ID: 18495541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and localization of mesoscopic motor control signals for human ECoG neuroprosthetics.
    Sanchez JC; Gunduz A; Carney PR; Principe JC
    J Neurosci Methods; 2008 Jan; 167(1):63-81. PubMed ID: 17582507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [EEG-based communication--a new concept for rehabilitative support in patients with severe motor impairment].
    Neuper C; Müller GR; Staiger-Sälzer P; Skliris D; Kübler A; Birbaumer N; Pfurtscheller G
    Rehabilitation (Stuttg); 2003 Dec; 42(6):371-7. PubMed ID: 14677109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal mechanisms underlying control of a brain-computer interface.
    Hinterberger T; Veit R; Wilhelm B; Weiskopf N; Vatine JJ; Birbaumer N
    Eur J Neurosci; 2005 Jun; 21(11):3169-81. PubMed ID: 15978025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks.
    Pfurtscheller G; Brunner C; Schlögl A; Lopes da Silva FH
    Neuroimage; 2006 May; 31(1):153-9. PubMed ID: 16443377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current trends in Graz Brain-Computer Interface (BCI) research.
    Pfurtscheller G; Neuper C; Guger C; Harkam W; Ramoser H; Schlögl A; Obermaier B; Pregenzer M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):216-9. PubMed ID: 10896192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of fronto-central phase coupling with sensorimotor rhythm modulation.
    Chung YG; Kang JH; Kim SP
    Neural Netw; 2012 Dec; 36():46-50. PubMed ID: 23037775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of brain-computer interfaces outside scientific laboratories toward an application in domotic environments.
    Babiloni F; Cincotti F; Marciani M; Salinari S; Astolfi L; Aloise F; De Vico Fallani F; Mattia D
    Int Rev Neurobiol; 2009; 86():133-46. PubMed ID: 19607996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor imagery and EEG-based control of spelling devices and neuroprostheses.
    Neuper C; Müller-Putz GR; Scherer R; Pfurtscheller G
    Prog Brain Res; 2006; 159():393-409. PubMed ID: 17071244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface.
    Kübler A; Nijboer F; Mellinger J; Vaughan TM; Pawelzik H; Schalk G; McFarland DJ; Birbaumer N; Wolpaw JR
    Neurology; 2005 May; 64(10):1775-7. PubMed ID: 15911809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward self-paced brain-computer communication: navigation through virtual worlds.
    Scherer R; Lee F; Schlogl A; Leeb R; Bischof H; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):675-82. PubMed ID: 18270004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface.
    Sitaram R; Zhang H; Guan C; Thulasidas M; Hoshi Y; Ishikawa A; Shimizu K; Birbaumer N
    Neuroimage; 2007 Feb; 34(4):1416-27. PubMed ID: 17196832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction subject-specific motor imagery time-frequency patterns for single trial EEG classification.
    Ince NF; Tewfik AH; Arica S
    Comput Biol Med; 2007 Apr; 37(4):499-508. PubMed ID: 17010962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.
    Birbaumer N
    Psychophysiology; 2006 Nov; 43(6):517-32. PubMed ID: 17076808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.