These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18495923)

  • 1. Biochemical visualization of cell surface molecular clustering in living cells.
    Kotani N; Gu J; Isaji T; Udaka K; Taniguchi N; Honke K
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7405-9. PubMed ID: 18495923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains.
    Miyagawa-Yamaguchi A; Kotani N; Honke K
    PLoS One; 2014; 9(3):e93054. PubMed ID: 24671047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cell-surface molecular interactions under living conditions by using the enzyme-mediated activation of radical sources (EMARS) method.
    Honke K; Kotani N
    Sensors (Basel); 2012 Nov; 12(12):16037-45. PubMed ID: 23443365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lighting up by EMARS.
    Higashiyama S
    J Biochem; 2012 Nov; 152(5):381-2. PubMed ID: 22923738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The EMARS Reaction for Proximity Labeling.
    Honke K; Miyagawa-Yamaguchi A; Kotani N
    Methods Mol Biol; 2019; 2008():1-12. PubMed ID: 31124084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of lipid raft molecules in the living brain slices.
    Kotani N; Nakano T; Ida Y; Ito R; Hashizume M; Yamaguchi A; Seo M; Araki T; Hojo Y; Honke K; Murakoshi T
    Neurochem Int; 2018 Oct; 119():140-150. PubMed ID: 28844489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal.
    Miyagawa-Yamaguchi A; Kotani N; Honke K
    Glycoconj J; 2015 Oct; 32(7):531-40. PubMed ID: 25948169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteomics approach to the cell-surface interactome using the enzyme-mediated activation of radical sources reaction.
    Jiang S; Kotani N; Ohnishi T; Miyagawa-Yamguchi A; Tsuda M; Yamashita R; Ishiura Y; Honke K
    Proteomics; 2012 Jan; 12(1):54-62. PubMed ID: 22106087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell surface biotinylation of receptor tyrosine kinases to investigate intracellular trafficking.
    Crupi MJ; Richardson DS; Mulligan LM
    Methods Mol Biol; 2015; 1233():91-102. PubMed ID: 25319892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Novel approach for the cell surface molecular interactome using enzyme-mediated activation of radical sources (EMARS) reaction].
    Kotani N; Honke K
    Seikagaku; 2011 Aug; 83(8):754-8. PubMed ID: 21942100
    [No Abstract]   [Full Text] [Related]  

  • 11. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains.
    Honke K; Kotani N
    J Neurochem; 2011 Mar; 116(5):690-5. PubMed ID: 21214558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell surface biotinylation by azaelectrocyclization: easy-handling and versatile approach for living cell labeling.
    Tanaka K; Yokoi S; Morimoto K; Iwata T; Nakamoto Y; Nakayama K; Koyama K; Fujiwara T; Fukase K
    Bioorg Med Chem; 2012 Mar; 20(6):1865-8. PubMed ID: 22257530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity enrichment of plasma membrane for proteomics analysis.
    Zhang W; Zhou G; Zhao Y; White MA; Zhao Y
    Electrophoresis; 2003 Aug; 24(16):2855-63. PubMed ID: 12929181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using hierarchical clustering and dendrograms to quantify the clustering of membrane proteins.
    Espinoza FA; Oliver JM; Wilson BS; Steinberg SL
    Bull Math Biol; 2012 Jan; 74(1):190-211. PubMed ID: 21751075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PALM imaging and cluster analysis of protein heterogeneity at the cell surface.
    Owen DM; Rentero C; Rossy J; Magenau A; Williamson D; Rodriguez M; Gaus K
    J Biophotonics; 2010 Jul; 3(7):446-54. PubMed ID: 20148419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporally-regulated interaction between β1 integrin and ErbB4 that is involved in fibronectin-dependent cell migration.
    Yamashita R; Kotani N; Ishiura Y; Higashiyama S; Honke K
    J Biochem; 2011 Mar; 149(3):347-55. PubMed ID: 21217148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oolemmal proteomics--identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane.
    Calvert ME; Digilio LC; Herr JC; Coonrod SA
    Reprod Biol Endocrinol; 2003 Feb; 1():27. PubMed ID: 12646049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of surface plasma membrane proteins of primary and metastatic melanoma cells.
    Qiu H; Wang Y
    J Proteome Res; 2008 May; 7(5):1904-15. PubMed ID: 18410138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for molecular clustering.
    Hashimoto N; Hamamura K; Kotani N; Furukawa K; Kaneko K; Honke K; Furukawa K
    Proteomics; 2012 Nov; 12(21):3154-63. PubMed ID: 22936677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibody-driven capture of synaptic vesicle proteins on the plasma membrane enables the analysis of their interactions with other synaptic proteins.
    Richter KN; Patzelt C; Phan NTN; Rizzoli SO
    Sci Rep; 2019 Jun; 9(1):9231. PubMed ID: 31239503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.