BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18495927)

  • 1. Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle.
    Sendamarai AK; Ohgami RS; Fleming MD; Lawrence CM
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7410-5. PubMed ID: 18495927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells.
    Ohgami RS; Campagna DR; Greer EL; Antiochos B; McDonald A; Chen J; Sharp JJ; Fujiwara Y; Barker JE; Fleming MD
    Nat Genet; 2005 Nov; 37(11):1264-9. PubMed ID: 16227996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a single b-type heme, FAD, and metal binding sites in the transmembrane domain of six-transmembrane epithelial antigen of the prostate (STEAP) family proteins.
    Kleven MD; Dlakić M; Lawrence CM
    J Biol Chem; 2015 Sep; 290(37):22558-69. PubMed ID: 26205815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for multiple ligand recognition by the human transferrin receptor.
    Giannetti AM; Snow PM; Zak O; Björkman PJ
    PLoS Biol; 2003 Dec; 1(3):E51. PubMed ID: 14691533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of six-transmembrane epithelial antigen of the prostate 4 (Steap4), a ferri/cuprireductase, suggests a novel interdomain flavin-binding site.
    Gauss GH; Kleven MD; Sendamarai AK; Fleming MD; Lawrence CM
    J Biol Chem; 2013 Jul; 288(28):20668-82. PubMed ID: 23733181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase.
    Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ
    J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH.
    Eckenroth BE; Steere AN; Chasteen ND; Everse SJ; Mason AB
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13089-94. PubMed ID: 21788477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin reductase P: structure of a dimeric enzyme that reduces flavin.
    Tanner JJ; Lei B; Tu SC; Krause KL
    Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport.
    Inman RS; Coughlan MM; Wessling-Resnick M
    Biochemistry; 1994 Oct; 33(39):11850-7. PubMed ID: 7918403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice.
    Canonne-Hergaux F; Zhang AS; Ponka P; Gros P
    Blood; 2001 Dec; 98(13):3823-30. PubMed ID: 11739192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism.
    Lambe T; Simpson RJ; Dawson S; Bouriez-Jones T; Crockford TL; Lepherd M; Latunde-Dada GO; Robinson H; Raja KB; Campagna DR; Villarreal G; Ellory JC; Goodnow CC; Fleming MD; McKie AT; Cornall RJ
    Blood; 2009 Feb; 113(8):1805-8. PubMed ID: 18955558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the human transferrin receptor-transferrin complex.
    Cheng Y; Zak O; Aisen P; Harrison SC; Walz T
    Cell; 2004 Feb; 116(4):565-76. PubMed ID: 14980223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells.
    Garrick LM; Dolan KG; Romano MA; Garrick MD
    J Cell Physiol; 1999 Mar; 178(3):349-58. PubMed ID: 9989781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steap proteins: implications for iron and copper metabolism.
    Knutson MD
    Nutr Rev; 2007 Jul; 65(7):335-40. PubMed ID: 17695374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases.
    Meng F; Fleming BA; Jia X; Rousek AA; Mulvey MA; Ward DM
    Blood Adv; 2022 Mar; 6(6):1692-1707. PubMed ID: 34982827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1.
    Finn RD; Basran J; Roitel O; Wolf CR; Munro AW; Paine MJ; Scrutton NS
    Eur J Biochem; 2003 Mar; 270(6):1164-75. PubMed ID: 12631275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.