BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 18495927)

  • 41. Six-Transmembrane Epithelial Antigen of Prostate 3 Predicts Poor Prognosis and Promotes Glioblastoma Growth and Invasion.
    Han M; Xu R; Wang S; Yang N; Ni S; Zhang Q; Xu Y; Zhang X; Zhang C; Wei Y; Ji J; Huang B; Zhang D; Chen A; Li W; Bjerkvig R; Li X; Wang J
    Neoplasia; 2018 Jun; 20(6):543-554. PubMed ID: 29730475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure of a cytochrome P450-redox partner electron-transfer complex.
    Sevrioukova IF; Li H; Zhang H; Peterson JA; Poulos TL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1863-8. PubMed ID: 10051560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.
    Yu J; Wessling-Resnick M
    J Biol Chem; 1998 Mar; 273(12):6909-15. PubMed ID: 9506995
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells.
    Richardson DR; Ponka P
    Biochim Biophys Acta; 1997 Mar; 1331(1):1-40. PubMed ID: 9325434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates.
    Topham R; Goger M; Pearce K; Schultz P
    Biochem J; 1989 Jul; 261(1):137-43. PubMed ID: 2775199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ionic residues of human serum transferrin affect binding to the transferrin receptor and iron release.
    Steere AN; Miller BF; Roberts SE; Byrne SL; Chasteen ND; Smith VC; MacGillivray RT; Mason AB
    Biochemistry; 2012 Jan; 51(2):686-94. PubMed ID: 22191507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transferrin-bound and transferrin free iron uptake by cultured rat astrocytes.
    Qian ZM; Liao QK; To Y; Ke Y; Tsoi YK; Wang GF; Ho KP
    Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):541-8. PubMed ID: 10872741
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.).
    Zhang D; Lee HF; Pettit SC; Zaro JL; Huang N; Shen WC
    BMC Biotechnol; 2012 Nov; 12():92. PubMed ID: 23194296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phorbol esters stimulate non-transferrin iron uptake by K562 cells.
    Akompong T; Inman RS; Wessling-Resnick M
    J Biol Chem; 1995 Sep; 270(36):20937-41. PubMed ID: 7673117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The thermodynamic and binding properties of the transferrins as studied by isothermal titration calorimetry.
    Bou-Abdallah F; Terpstra TR
    Biochim Biophys Acta; 2012 Mar; 1820(3):318-25. PubMed ID: 21843602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterotypic interactions between transferrin receptor and transferrin receptor 2.
    Vogt TM; Blackwell AD; Giannetti AM; Bjorkman PJ; Enns CA
    Blood; 2003 Mar; 101(5):2008-14. PubMed ID: 12406888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring transferrin-receptor interactions at the single-molecule level.
    Yersin A; Osada T; Ikai A
    Biophys J; 2008 Jan; 94(1):230-40. PubMed ID: 17872962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor.
    Fujita H; Iwabu Y; Tokunaga K; Tanaka Y
    J Cell Sci; 2013 Jul; 126(Pt 13):2798-809. PubMed ID: 23606747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP.
    Kingston RL; Scopes RK; Baker EN
    Structure; 1996 Dec; 4(12):1413-28. PubMed ID: 8994968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase.
    Silaghi-Dumitrescu R; Kurtz DM; Ljungdahl LG; Lanzilotta WN
    Biochemistry; 2005 May; 44(17):6492-501. PubMed ID: 15850383
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Macrophages function as a ferritin iron source for cultured human erythroid precursors.
    Leimberg MJ; Prus E; Konijn AM; Fibach E
    J Cell Biochem; 2008 Mar; 103(4):1211-8. PubMed ID: 17902167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    Microbiol Res; 2016; 188-189():9-22. PubMed ID: 27296958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE.
    West AP; Bennett MJ; Sellers VM; Andrews NC; Enns CA; Bjorkman PJ
    J Biol Chem; 2000 Dec; 275(49):38135-8. PubMed ID: 11027676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.