These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18495997)

  • 1. Nutrient removal process selection for planning and design of large wastewater treatment plant upgrade needs.
    Urgun-Demirtas M; Pagilla KR; Kunetz TE; Sobanski JP; Law KP
    Water Sci Technol; 2008; 57(9):1345-8. PubMed ID: 18495997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternatives for upgrading the Wilderness Wastewater Treatment Plant for biological nutrient removal.
    Cokgor EU; Randall CW
    Water Sci Technol; 2003; 48(11-12):453-62. PubMed ID: 14753568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WEF/WERF study of BNR plants achieving very low N and P limits: evaluation of technology performance and process reliability.
    Bott CB; Parker DS; Jimenez J; Miller MW; Neethling JB
    Water Sci Technol; 2012; 65(5):808-15. PubMed ID: 22339014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phased upgrading for nitrogen removal--a low cost approach.
    Solley D; Armstrong M
    Water Sci Technol; 2003; 47(11):157-63. PubMed ID: 12906285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.
    Gnirss R; Lesjean B; Adam C; Buisson H
    Water Sci Technol; 2003; 47(12):133-9. PubMed ID: 12926680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.
    Huett DO; Morris SG; Smith G; Hunt N
    Water Res; 2005 Sep; 39(14):3259-72. PubMed ID: 16023175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient removal from wastewaters using high performance materials.
    Mackinnon ID; Barr K; Miller E; Hunter S; Pinel T
    Water Sci Technol; 2003; 47(11):101-7. PubMed ID: 12906277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen and phosphorus removal under intermittent aeration conditions.
    Xia SQ; Gao TY; Zhou ZY
    J Environ Sci (China); 2002 Oct; 14(4):541-6. PubMed ID: 12491730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater.
    Kim D; Kim KY; Ryu HD; Min KK; Lee SI
    Bioresour Technol; 2009 Jul; 100(13):3180-4. PubMed ID: 19269166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.
    Puig S; van Loosdrecht MC; Flameling AG; Colprim J; Meijer SC
    Water Res; 2010 Jun; 44(11):3375-84. PubMed ID: 20430413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small scale hydroponics wastewater treatment system under Swedish conditions.
    Norström A; Larsdotter K; Gumaelius L; la Cour Jansen J; Dalhammar G
    Water Sci Technol; 2003; 48(11-12):161-7. PubMed ID: 14753532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor.
    Li JP; Healy MG; Zhan XM; Rodgers M
    Bioresour Technol; 2008 Nov; 99(16):7644-50. PubMed ID: 18359223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WERF Nutrient Challenge investigates limits of nutrient removal technologies.
    Neethling JB; Clark D; Pramanik A; Stensel HD; Sandino J; Tsuchihashi R
    Water Sci Technol; 2010; 61(4):945-53. PubMed ID: 20182073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient minimisation in the pulp and paper industry: an overview.
    Slade AH; Ellis RJ; vanden Heuvel M; Stuthridge TR
    Water Sci Technol; 2004; 50(3):111-22. PubMed ID: 15461405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term performance summary for the Boot Wetland Treatment System.
    Martin JR; Keller CH; Clarke RA; Knight RL
    Water Sci Technol; 2001; 44(11-12):413-20. PubMed ID: 11804128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of membrane bioreactor system with full scale plant on livestock wastewater.
    Kim H; Kim HS; Yeom IT; Chae YB
    Water Sci Technol; 2005; 51(6-7):465-71. PubMed ID: 16004009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the effluent of small wastewater treatment plants by bacteria reduction and nutrient removal with an algal biofilm.
    Schumacher G; Sekoulov I
    Water Sci Technol; 2003; 48(2):373-80. PubMed ID: 14510233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of AWT systems in the metro Atlanta area.
    Mines RO; Behrend GR; Holmes Bell G
    J Environ Manage; 2004 Apr; 70(4):309-14. PubMed ID: 15016439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of duckweed-based pond systems as an alternative option for decentralised treatment and reuse of wastewater in Zimbabwe.
    Nhapi I; Dalu J; Ndamba J; Siebel MA; Gijzen HJ
    Water Sci Technol; 2003; 48(2):323-30. PubMed ID: 14510227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.