These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18496270)

  • 1. In vivo performance of a muscle-powered drive system for implantable blood pumps.
    Trumble DR; Melvin DB; Dean DA; Magovern JA
    ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo studies of an implantable energy convertor for skeletal muscle powered cardiac assist.
    Reichenbach SH; Farrar DJ; Diao E; Hill JD
    ASAIO J; 1997; 43(5):M668-72. PubMed ID: 9360130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle powered blood pump: design and initial test results.
    Trumble DR; Magovern JA
    ASAIO J; 1999; 45(3):178-82. PubMed ID: 10360719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing in situ skeletal muscle power for circulatory support: a new approach to device design.
    Trumble DR; Magovern JA
    ASAIO J; 2003; 49(4):480-5. PubMed ID: 12918595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power generation from four skeletal muscle configurations. Design implications for a muscle powered cardiac assist device.
    Badhwar V; Badhwar RK; Oh JH; Chiu RC
    ASAIO J; 1997; 43(5):M651-7. PubMed ID: 9360126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A permanent prosthesis for converting in situ muscle contractions into hydraulic power for cardiac assist.
    Trumble DR; Magovern JA
    J Appl Physiol (1985); 1997 May; 82(5):1704-11. PubMed ID: 9134922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential mechanisms for muscle-powered cardiac support.
    Trumble DR
    Artif Organs; 2011 Jul; 35(7):715-20. PubMed ID: 21599720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compressive type skeletal muscle pump as a biomechanical energy source.
    Mizuhara H; Oda T; Koshiji T; Ikeda T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1996; 42(5):M637-41. PubMed ID: 8944958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved mechanism for capturing muscle power for circulatory support.
    Trumble DR; Melvin DB; Byrne MT; Magovern JA
    Artif Organs; 2005 Sep; 29(9):691-700. PubMed ID: 16143010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Output power and metabolic input power of skeletal muscle contracting linearly to compress a pouch in a mock circulatory system.
    Geddes LA; Badylak SF; Tacker WA; Janas W
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1435-42. PubMed ID: 1434727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring and regulating latissimus dorsi muscle performance for circulatory assist.
    Takagi H; Hirose H; Sasaki E; Imaizumi M; Hirota T; Bando M; Furuzawa Y; Murakawa S; Mori Y
    ASAIO J; 1997; 43(4):345-51. PubMed ID: 9242951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical advantage of skeletal muscle as a cardiac assist power source.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1995; 41(3):M481-4. PubMed ID: 8573851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle-powered ventricle. Effects of size and configuration on ventricular function.
    Oda T; Miyamoto AT; Okamoto Y; Ban T
    J Thorac Cardiovasc Surg; 1993 Jan; 105(1):68-77. PubMed ID: 8419711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left ventricular assistance in dogs using a skeletal muscle powered device for diastolic augmentation.
    Neilson IR; Brister SJ; Khalafalla AS; Chiu RC
    J Heart Transplant; 1985 May; 4(3):343-7. PubMed ID: 2956394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle.
    Gustafson KJ; Marinache SM; Egrie GD; Reichenbach SH
    Ann Biomed Eng; 2006 May; 34(5):790-8. PubMed ID: 16598656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A muscle powered cardiac assist device for right ventricular support: total assist or partial assist?
    Sakakibara N; Watanabe G; Misaki T; Mukai A; Tsubota M; Takemura H; Ohtake Y; Iwa T
    ASAIO Trans; 1990; 36(3):M372-5. PubMed ID: 2252702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double chamber ventricular assist device with a roller screw linear actuator driven by left and right latissimus dorsi muscles.
    Takatani S; Takami Y; Nakazawa T; Jacobs G; Nose Y
    ASAIO J; 1995; 41(3):M475-80. PubMed ID: 8573850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Totally implantable robot to treat chronic atrial fibrillation.
    Tozzi P; Hayoz D; Thévenaz P; Roulet JY; Salchli F; von Segesser LK
    Bioinspir Biomim; 2008 Sep; 3(3):035009. PubMed ID: 18667758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.