These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18496591)

  • 1. Position and Orientation Distributions for Locally Self-Avoiding Walks in the Presence of Obstacles.
    Skliros A; Chirikjian GS
    Polymer (Guildf); 2008 Mar; 49(6):1701-1715. PubMed ID: 18496591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position and Orientation Distributions for Non-Reversal Random Walks using Space-Group Fourier Transforms.
    Skliros A; Park W; Chirikjian GS
    J Algebr Stat; 2010; 1(1):27-46. PubMed ID: 21037950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional random walk statistics on lattices using convolution on crystallographic motion groups.
    Skliros A; Chirikjian GS
    Polymer (Guildf); 2007 Mar; 48(7):2155-2173. PubMed ID: 17898862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined Polymers as Self-Avoiding Random Walks on Restricted Lattices.
    Benito J; Karayiannis NC; Laso M
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Winding angles of long lattice walks.
    Hammer Y; Kantor Y
    J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping in self-avoiding walks with nearest-neighbor attraction.
    Hooper W; Klotz AR
    Phys Rev E; 2020 Sep; 102(3-1):032132. PubMed ID: 33076037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement.
    Parreño O; Ramos PM; Karayiannis NC; Laso M
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universality classes for self-avoiding walks in a strongly disordered system.
    Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056128. PubMed ID: 12059668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-avoiding walks and connective constants in clustered scale-free networks.
    Herrero CP
    Phys Rev E; 2019 Jan; 99(1-1):012314. PubMed ID: 30780369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact Enumeration Approach to Estimate the Theta Temperature of Interacting Self-Avoiding Walks on the Simple Cubic Lattice.
    Huang SS; Hsieh YH; Chen CN
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-avoiding random walk with multiple site weightings and restrictions.
    Krawczyk J; Prellberg T; Owczarek AL; Rechnitzer A
    Phys Rev Lett; 2006 Jun; 96(24):240603. PubMed ID: 16907227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-dependent structural behavior of self-avoiding walks on three-dimensional Sierpinski sponges.
    Fritsche M; Heermann DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051119. PubMed ID: 20866197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks.
    Granzotti CR; Martinez AS; da Silva MA
    Phys Rev E; 2016 May; 93(5):052116. PubMed ID: 27300839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-avoiding walks and connective constants in small-world networks.
    Herrero CP; Saboyá M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026106. PubMed ID: 14525048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study of unfoldable self-avoiding walks - Application to protein structure prediction software.
    Guyeux C; Nicod JM; Philippe L; Bahi JM
    J Bioinform Comput Biol; 2015 Aug; 13(4):1550009. PubMed ID: 25669327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large deviations of convex hulls of self-avoiding random walks.
    Schawe H; Hartmann AK; Majumdar SN
    Phys Rev E; 2018 Jun; 97(6-1):062159. PubMed ID: 30011525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Violation of the des Cloizeaux relation for self-avoiding walks on Sierpinski square lattices.
    Marini F; Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051102. PubMed ID: 17279872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of lattice models for single polymer systems.
    Hsu HP
    J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unbinding of mutually avoiding random walks and two-dimensional quantum gravity.
    Carlon E; Baiesi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066118. PubMed ID: 15697445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum walks with tuneable self-avoidance in one dimension.
    Camilleri E; Rohde PP; Twamley J
    Sci Rep; 2014 Apr; 4():4791. PubMed ID: 24762398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.