These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18496726)

  • 1. Heterogeneous nature and distribution of interruptions in dinucleotides may indicate the existence of biased substitutions underlying microsatellite evolution.
    Varela MA; Sanmiguel R; Gonzalez-Tizon A; Martinez-Lage A
    J Mol Evol; 2008 Jun; 66(6):575-80. PubMed ID: 18496726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for widespread convergent evolution around human microsatellites.
    Vowles EJ; Amos W
    PLoS Biol; 2004 Aug; 2(8):E199. PubMed ID: 15314644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there evidence for convergent evolution around human microsatellites?
    Webster MT; Hagberg J
    Mol Biol Evol; 2007 May; 24(5):1097-100. PubMed ID: 17350937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences.
    Brohede J; Ellegren H
    Proc Biol Sci; 1999 Apr; 266(1421):825-33. PubMed ID: 10343406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silene tatarica microsatellites are frequently located in repetitive DNA.
    Tero N; Neumeier H; Gudavalli R; Schlötterer C
    J Evol Biol; 2006 Sep; 19(5):1612-9. PubMed ID: 16910990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequences flanking dinucleotide microsatellites in the human, mouse and Drosophila genomes.
    Matula M; Kypr J
    J Biomol Struct Dyn; 1999 Oct; 17(2):275-80. PubMed ID: 10563577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of interrupted human AC microsatellites.
    Sibly RM; Meade A; Boxall N; Wilkinson MJ; Corne DW; Whittaker JC
    Mol Biol Evol; 2003 Mar; 20(3):453-9. PubMed ID: 12644566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic mutation rates and specificities at TC/AG and GT/CA microsatellite sequences in nontumorigenic human lymphoblastoid cells.
    Hile SE; Yan G; Eckert KA
    Cancer Res; 2000 Mar; 60(6):1698-703. PubMed ID: 10749142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses.
    Edwards YJ; Elgar G; Clark MS; Bishop MJ
    J Mol Biol; 1998 May; 278(4):843-54. PubMed ID: 9614946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome.
    Bachtrog D; Weiss S; Zangerl B; Brem G; Schlötterer C
    Mol Biol Evol; 1999 May; 16(5):602-10. PubMed ID: 10335653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite and frame-shift error rates using a forward mutation assay.
    Eckert KA; Mowery A; Hile SE
    Biochemistry; 2002 Aug; 41(33):10490-8. PubMed ID: 12173936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia.
    Meglecz E; Petenian F; Danchin E; D'Acier AC; Rasplus JY; Faure E
    Mol Ecol; 2004 Jun; 13(6):1693-700. PubMed ID: 15140111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the structural differences between markers and genomic AC microsatellites.
    Pardi F; Sibly RM; Wilkinson MJ; Whittaker JC
    J Mol Evol; 2005 May; 60(5):688-93. PubMed ID: 15983876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for nonindependent evolution of adjacent microsatellites in the human genome.
    Varela MA; Amos W
    J Mol Evol; 2009 Feb; 68(2):160-70. PubMed ID: 19184164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting dinucleotide microsatellites conserved among mammalian species.
    Sun HS; Kirkpatrick BW
    Mamm Genome; 1996 Feb; 7(2):128-32. PubMed ID: 8835529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-dependent effect of interruptions on microsatellite mutation rate in mismatch repair-deficient human cells.
    Boyer JC; Hawk JD; Stefanovic L; Farber RA
    Mutat Res; 2008 Apr; 640(1-2):89-96. PubMed ID: 18242644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying ascertainment bias and species-specific length differences in human and chimpanzee microsatellites using genome sequences.
    Vowles EJ; Amos W
    Mol Biol Evol; 2006 Mar; 23(3):598-607. PubMed ID: 16301296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and abundance of microsatellites in the yeast genome can Be explained by a balance between slippage events and point mutations.
    Kruglyak S; Durrett R; Schug MD; Aquadro CF
    Mol Biol Evol; 2000 Aug; 17(8):1210-9. PubMed ID: 10908641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary dynamics of duplicated microsatellites shared by sex chromosomes.
    Balaresque P; Toupance B; Heyer E; Crouau-Roy B
    J Mol Evol; 2003; 57 Suppl 1():S128-37. PubMed ID: 15008409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hotspots of biased nucleotide substitutions in human genes.
    Berglund J; Pollard KS; Webster MT
    PLoS Biol; 2009 Jan; 7(1):e26. PubMed ID: 19175294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.