BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18496757)

  • 1. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater.
    Meliker JR; Slotnick MJ; Avruskin GA; Haack SK; Nriagu JO
    Environ Geochem Health; 2009 Feb; 31(1):147-57. PubMed ID: 18496757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications.
    Ayotte JD; Montgomery DL; Flanagan SM; Robinson KW
    Environ Sci Technol; 2003 May; 37(10):2075-83. PubMed ID: 12785510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA.
    Yang Q; Culbertson CW; Nielsen MG; Schalk CW; Johnson CD; Marvinney RG; Stute M; Zheng Y
    Sci Total Environ; 2015 Feb; 505():1291-307. PubMed ID: 24842411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China.
    Xie X; Wang Y; Duan M; Liu H
    Environ Geochem Health; 2009 Aug; 31(4):493-502. PubMed ID: 18763040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The source of naturally occurring arsenic in a coastal sand aquifer of eastern Australia.
    O'Shea B; Jankowski J; Sammut J
    Sci Total Environ; 2007 Jul; 379(2-3):151-66. PubMed ID: 17184824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic in glacial drift aquifers and the implication for drinking water--lower Illinois River Basin.
    Warner KL
    Ground Water; 2001; 39(3):433-42. PubMed ID: 11341009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada.
    Bondu R; Cloutier V; Rosa E; Benzaazoua M
    Sci Total Environ; 2017 Jan; 574():509-519. PubMed ID: 27648529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Assessments of a Novel Well Design for Reducing Exposure to Bedrock-Derived Arsenic.
    Winston RB; Ayotte JD
    Ground Water; 2018 Sep; 56(5):762-769. PubMed ID: 28952163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can arsenic occurrence rates in bedrock aquifers be predicted?
    Yang Q; Jung HB; Marvinney RG; Culbertson CW; Zheng Y
    Environ Sci Technol; 2012 Feb; 46(4):2080-7. PubMed ID: 22260208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of monsoonal recharge on arsenic and dissolved organic matter in the Holocene and Pleistocene aquifers of the Bengal Basin.
    Kulkarni HV; Mladenov N; Datta S; Chatterjee D
    Sci Total Environ; 2018 Oct; 637-638():588-599. PubMed ID: 29754092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA.
    Haque S; Ji J; Johannesson KH
    J Contam Hydrol; 2008 Jul; 99(1-4):68-84. PubMed ID: 18579256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review.
    Fakhreddine S; Prommer H; Scanlon BR; Ying SC; Nicot JP
    Environ Sci Technol; 2021 Feb; 55(4):2208-2223. PubMed ID: 33503373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China.
    Yang Y; Deng Y; Xie X; Gan Y; Li J
    Ecotoxicol Environ Saf; 2020 Dec; 206():111120. PubMed ID: 32861962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated Arsenic in Private Wells of Cerro Gordo County, Iowa: Causes and Policy Changes.
    Schnoebelen DJ; Walsh S; Hernandez-Murcia OE; Fields C
    J Environ Health; 2017 May; 79(9):32-9. PubMed ID: 29154523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk.
    McGrory ER; Brown C; Bargary N; Williams NH; Mannix A; Zhang C; Henry T; Daly E; Nicholas S; Petrunic BM; Lee M; Morrison L
    Sci Total Environ; 2017 Feb; 579():1863-1875. PubMed ID: 27932216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, Maine.
    Yang Q; Jung HB; Culbertson CW; Marvinney RG; Loiselle MC; Locke DB; Cheek H; Thibodeau H; Zheng Y
    Environ Sci Technol; 2009 Apr; 43(8):2714-9. PubMed ID: 19475939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA
    J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.