BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 18496867)

  • 1. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modifications and cell-materials interactions with anodized Ti.
    Das K; Bose S; Bandyopadhyay A
    Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells.
    Knabe C; Howlett CR; Klar F; Zreiqat H
    J Biomed Mater Res A; 2004 Oct; 71(1):98-107. PubMed ID: 15368259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro comparison of possibly bioactive titanium implant surfaces.
    Göransson A; Arvidsson A; Currie F; Franke-Stenport V; Kjellin P; Mustafa K; Sul YT; Wennerberg A
    J Biomed Mater Res A; 2009 Mar; 88(4):1037-47. PubMed ID: 18404711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human osteoblastic cell response to a Ca- and P-enriched titanium surface obtained by anodization.
    Franco Rde L; Chiesa R; Beloti MM; de Oliveira PT; Rosa AL
    J Biomed Mater Res A; 2009 Mar; 88(4):841-8. PubMed ID: 18357568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.
    de Assis AF; Beloti MM; Crippa GE; de Oliveira PT; Morra M; Rosa AL
    Clin Oral Implants Res; 2009 Mar; 20(3):240-6. PubMed ID: 19397635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressed primary osteoblast functions on nanoporous titania surface.
    Zhao L; Mei S; Wang W; Chu PK; Zhang Y; Wu Z
    J Biomed Mater Res A; 2011 Jan; 96(1):100-7. PubMed ID: 21105157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteoblast functions on anodized titanium with nanotube-like structures.
    Yao C; Slamovich EB; Webster TJ
    J Biomed Mater Res A; 2008 Apr; 85(1):157-66. PubMed ID: 17688267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of calcium ion implantation on human bone cell interaction with titanium.
    Nayab SN; Jones FH; Olsen I
    Biomaterials; 2005 Aug; 26(23):4717-27. PubMed ID: 15763251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of biomimetic deposition on anodized titanium surfaces.
    Kim MH; Lee SY; Kim MJ; Kim SK; Heo SJ; Koak JY
    J Dent Res; 2011 Jun; 90(6):711-6. PubMed ID: 21393553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings.
    Han Y; Chen D; Sun J; Zhang Y; Xu K
    Acta Biomater; 2008 Sep; 4(5):1518-29. PubMed ID: 18430620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ; Jiang XQ; Zhang FQ; Xu L
    J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes.
    Oh S; Daraio C; Chen LH; Pisanic TR; Fiñones RR; Jin S
    J Biomed Mater Res A; 2006 Jul; 78(1):97-103. PubMed ID: 16602089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclo-DfKRG peptide modulates in vitro and in vivo behavior of human osteoprogenitor cells on titanium alloys.
    Pallu S; Fricain JC; Bareille R; Bourget C; Dard M; Sewing A; Amédée J
    Acta Biomater; 2009 Nov; 5(9):3581-92. PubMed ID: 19467347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast-like cells are sensitive to submicron-scale surface structure.
    Zhao G; Zinger O; Schwartz Z; Wieland M; Landolt D; Boyan BD
    Clin Oral Implants Res; 2006 Jun; 17(3):258-64. PubMed ID: 16672020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure.
    Nune KC; Misra R; Gai X; Li SJ; Hao YL
    J Biomater Appl; 2018 Mar; 32(8):1032-1048. PubMed ID: 29249195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization.
    Canabarro A; Diniz MG; Paciornik S; Carvalho L; Sampaio EM; Beloti MM; Rosa AL; Fischer RG
    J Biomed Mater Res A; 2008 Dec; 87(3):588-97. PubMed ID: 18186053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.