These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18497130)

  • 1. Funneling of flow into grain-to-grain contacts drives colloid-colloid aggregation in the presence of an energy barrier.
    Tong M; ma H; Johnson WP
    Environ Sci Technol; 2008 Apr; 42(8):2826-32. PubMed ID: 18497130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity.
    Tong M; Joainson WP
    Environ Sci Technol; 2006 Dec; 40(24):7725-31. PubMed ID: 17256519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3762-8. PubMed ID: 16830539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3769-74. PubMed ID: 16830540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system.
    Johnson WP; Tong M
    Environ Sci Technol; 2006 Aug; 40(16):5015-21. PubMed ID: 16955901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory.
    Tong M; Johnson WP
    Environ Sci Technol; 2007 Jan; 41(2):493-9. PubMed ID: 17310712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.
    Peng S; Wu D; Ge Z; Tong M; Kim H
    Environ Pollut; 2017 Jun; 225():141-149. PubMed ID: 28365511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions.
    Li X; Zhang P; Lin CL; Johnson WP
    Environ Sci Technol; 2005 Jun; 39(11):4012-20. PubMed ID: 15984777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions.
    Li X; Johnson WP
    Environ Sci Technol; 2005 Mar; 39(6):1658-65. PubMed ID: 15819222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists.
    Johnson WP; Rasmuson A; PazmiƱo E; Hilpert M
    Environ Sci Technol; 2018 Jul; 52(13):7230-7239. PubMed ID: 29888906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon.
    Li X; Scheibe TD; Johnson WP
    Environ Sci Technol; 2004 Nov; 38(21):5616-25. PubMed ID: 15575280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
    Johnson WP; Li X; Yal G
    Environ Sci Technol; 2007 Feb; 41(4):1279-87. PubMed ID: 17593731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epi-fluorescence imaging of colloid transport in porous media at decimeter scales.
    Zhang P; Wang Y
    Environ Sci Technol; 2006 Oct; 40(19):6064-9. PubMed ID: 17051801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging.
    Bridge JW; Banwart SA; Heathwaite AL
    Environ Sci Technol; 2006 Oct; 40(19):5930-6. PubMed ID: 17051781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption-desorption of
    Zhang L; Li L; Chen K; Zhang Q; Shao J; Cui Y; Zhu J; Zhang A; Yang S
    J Environ Radioact; 2024 May; 275():107430. PubMed ID: 38615506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations.
    Johnson WP; Pazmino E; Ma H
    Water Res; 2010 Feb; 44(4):1158-69. PubMed ID: 20132959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.