These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18497161)

  • 1. Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation.
    Fujita Y; Taylor JL; Gresham TL; Delwiche ME; Colwell FS; Mcling TL; Petzke LM; Smith RW
    Environ Sci Technol; 2008 Apr; 42(8):3025-32. PubMed ID: 18497161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of strontium contaminants upon the size and solubility of calcite crystals precipitated by the bacterial hydrolysis of urea.
    Mitchell AC; Ferris FG
    Environ Sci Technol; 2006 Feb; 40(3):1008-14. PubMed ID: 16509350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms.
    Gomez MG; Graddy CMR; DeJong JT; Nelson DC
    Sci Rep; 2019 Aug; 9(1):11517. PubMed ID: 31395919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation.
    Gat D; Ronen Z; Tsesarsky M
    Environ Sci Technol; 2016 Jan; 50(2):616-24. PubMed ID: 26689904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole cell kinetics of ureolysis by Sporosarcina pasteurii.
    Lauchnor EG; Topp DM; Parker AE; Gerlach R
    J Appl Microbiol; 2015 Jun; 118(6):1321-32. PubMed ID: 25809221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term sustainability of microbial-induced CaCO
    Gat D; Ronen Z; Tsesarsky M
    Chemosphere; 2017 Oct; 184():524-531. PubMed ID: 28622648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial and Geochemical Dynamics of an Aquifer Stimulated for Microbial Induced Calcite Precipitation (MICP).
    Ohan JA; Saneiyan S; Lee J; Bartlow AW; Ntarlagiannis D; Burns SE; Colwell FS
    Front Microbiol; 2020; 11():1327. PubMed ID: 32612598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system.
    Lauchnor EG; Schultz LN; Bugni S; Mitchell AC; Cunningham AB; Gerlach R
    Environ Sci Technol; 2013 Feb; 47(3):1557-64. PubMed ID: 23282003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaCO3 precipitation, transport and sensing in porous media with in situ generation of reactants.
    Redden G; Fox D; Zhang C; Fujita Y; Guo L; Huang H
    Environ Sci Technol; 2014; 48(1):542-9. PubMed ID: 24289499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease.
    Li H; Song Y; Li Q; He J; Song Y
    Bioresour Technol; 2014 Sep; 167():269-75. PubMed ID: 24994684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomineralization of heavy metals based on urea transport and hydrolysis within a new bacterial isolate, B. intermedia TSBOI.
    Hu X; Yu C; Li X; Zou J; Du Y; Paterson DM
    J Hazard Mater; 2024 May; 469():134049. PubMed ID: 38522207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment.
    Fujita Y; Taylor JL; Wendt LM; Reed DW; Smith RW
    Environ Sci Technol; 2010 Oct; 44(19):7652-8. PubMed ID: 20815389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical process of ureolysis-based microbial CaCO
    Xu J; Wang X; Wang B
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3121-3132. PubMed ID: 29455387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.
    Mitchell AC; Dideriksen K; Spangler LH; Cunningham AB; Gerlach R
    Environ Sci Technol; 2010 Jul; 44(13):5270-6. PubMed ID: 20540571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular, biochemical and ecological characterisation of a bio-catalytic calcification reactor.
    Hammes F; Boon N; Clement G; de Villiers J; Siciliano SD; Verstraete W
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):191-201. PubMed ID: 12883864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM.
    Ghezelbash GR; Haddadi M
    World J Microbiol Biotechnol; 2018 Nov; 34(12):174. PubMed ID: 30446832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284.
    Rahmaninezhad SA; Houshmand M; Sadighi A; Ahmari K; Kamireddi D; Street RM; Farnam YA; Schauer CL; Najafi AR; Sales CM
    J Biosci Bioeng; 2024 Jul; 138(1):63-72. PubMed ID: 38614831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum conditions for microbial carbonate precipitation.
    Okwadha GD; Li J
    Chemosphere; 2010 Nov; 81(9):1143-8. PubMed ID: 20947128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation of Cd by microbially induced calcite precipitation.
    Kang CH; Han SH; Shin Y; Oh SJ; So JS
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2907-15. PubMed ID: 24458656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of ureolytic Enterobacter cloacae EMB19 mediated calcite precipitation in remediation of Zn (II).
    Bhattacharya A; Naik SN; Khare SK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):526-532. PubMed ID: 30729861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.