BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18497353)

  • 1. Effect of intrathecal administration of serotoninergic and noradrenergic drugs on postural performance in rabbits with spinal cord lesions.
    Lyalka VF; Musienko PE; Orlovsky GN; Grillner S; Deliagina TG
    J Neurophysiol; 2008 Aug; 100(2):723-32. PubMed ID: 18497353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of postural control in rabbits with extensive spinal lesions.
    Lyalka VF; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2009 Apr; 101(4):1932-40. PubMed ID: 19164112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs.
    Brustein E; Rossignol S
    J Neurophysiol; 1999 Apr; 81(4):1513-30. PubMed ID: 10200188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation of postural limb reflexes in spinal rabbits by serotonergic agonist administration, epidural electrical stimulation, and postural training.
    Lyalka VF; Hsu LJ; Karayannidou A; Zelenin PV; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2011 Sep; 106(3):1341-54. PubMed ID: 21653706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment and recovery of postural control in rabbits with spinal cord lesions.
    Lyalka VF; Zelenin PV; Karayannidou A; Orlovsky GN; Grillner S; Deliagina TG
    J Neurophysiol; 2005 Dec; 94(6):3677-90. PubMed ID: 16049143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits.
    Musienko PE; Zelenin PV; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2010 Feb; 103(2):1080-92. PubMed ID: 20018835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in operation of postural networks in rabbits with postural functions recovered after lateral hemisection of the spinal cord.
    Zelenin PV; Lyalka VF; Deliagina TG
    J Physiol; 2023 Jan; 601(2):307-334. PubMed ID: 36463517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats.
    Chau C; Barbeau H; Rossignol S
    J Neurophysiol; 1998 Jun; 79(6):2941-63. PubMed ID: 9636099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks.
    Zelenin PV; Lyalka VF; Orlovsky GN; Deliagina TG
    Neuroscience; 2016 Dec; 339():235-253. PubMed ID: 27702647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Activity of Spinal Postural Networks at Different Time Points After Spinalization.
    Zelenin PV; Lyalka VF; Orlovsky GN; Deliagina TG
    Front Cell Neurosci; 2019; 13():387. PubMed ID: 31496938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putative spinal interneurons mediating postural limb reflexes provide a basis for postural control in different planes.
    Zelenin PV; Hsu LJ; Lyalka VF; Orlovsky GN; Deliagina TG
    Eur J Neurosci; 2015 Jan; 41(2):168-81. PubMed ID: 25370349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of single corrective steps evoked in the standing rabbit.
    Hsu LJ; Zelenin PV; Lyalka VF; Vemula MG; Orlovsky GN; Deliagina TG
    Neuroscience; 2017 Apr; 347():85-102. PubMed ID: 28215990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of spinal cord injury on neural encoding of spontaneous postural perturbations in the hindlimb sensorimotor cortex.
    Dougherty JB; Disse GD; Bridges NR; Moxon KA
    J Neurophysiol; 2021 Nov; 126(5):1555-1567. PubMed ID: 34379540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of reversible spinalization on individual spinal neurons.
    Zelenin PV; Lyalka VF; Hsu LJ; Orlovsky GN; Deliagina TG
    J Neurosci; 2013 Nov; 33(48):18987-98. PubMed ID: 24285903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acute spinalization on neurons of postural networks.
    Zelenin PV; Lyalka VF; Hsu LJ; Orlovsky GN; Deliagina TG
    Sci Rep; 2016 Jun; 6():27372. PubMed ID: 27302149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural control in the rabbit maintaining balance on the tilting platform.
    Beloozerova IN; Zelenin PV; Popova LB; Orlovsky GN; Grillner S; Deliagina TG
    J Neurophysiol; 2003 Dec; 90(6):3783-93. PubMed ID: 12930819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury.
    Gad P; Roy RR; Choe J; Creagmile J; Zhong H; Gerasimenko Y; Edgerton VR
    J Neurophysiol; 2015 May; 113(9):3386-96. PubMed ID: 25695648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrathecal 6-hydroxydopamine or cervical spinal hemisection reduces norepinephrine content, but not the density of alpha 2-adrenoceptors, in the cat lumbar spinal enlargement.
    Howe JR; Yaksh TL; Tyce GM
    Neuroscience; 1987 May; 21(2):377-84. PubMed ID: 3039400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrathecal bupivacaine protects against extension of lesions in an acute photochemical spinal cord injury model.
    Lopez S; Privat A; Bernard N; Ohanna F; Vergnes C; Capdevila X
    Can J Anaesth; 2004 Apr; 51(4):364-72. PubMed ID: 15064266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.